Skip to main content
Log in

Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Despite recent advances in the study of temporal networks, the analysis of time-stamped network data is still a fundamental challenge. In particular, recent studies have shown that correlations in the ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based on static, time-aggregated representations of time-stamped data. These findings not only highlight an important dimension of complexity in temporal networks, but also call for new network-analytic methods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge, here we introduce a novel framework for the study of path-based centralities in temporal networks. Studying betweenness, closeness and reach centrality, we first show than an application of these measures to time-aggregated, static representations of temporal networks yields misleading results about the actual importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate networks, a recently proposed generalization of the commonly used static representation of time-stamped data. Using data on six empirical temporal networks, we show that the resulting higher-order measures better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally efficient data mining techniques for time-stamped relational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  2. P. Holme, Eur. Phys. J. B 88, 234 (2015)

    Article  ADS  Google Scholar 

  3. J.L. Iribarren, E. Moro, Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  4. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  5. L.E.C. Rocha, F. Liljeros, P. Holme, PLoS Comput. Biol. 7, e1001109 (2011)

    Article  ADS  Google Scholar 

  6. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  7. N. Perra, A. Baronchelli, D. Mocanu, B. Goncalves, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012)

    Article  ADS  Google Scholar 

  8. N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  9. T. Hoffmann, M.A. Porter, R. Lambiotte, Random Walks on stochastic temporal networks, in Temporal Networks, Understanding Complex Systems, edited by P. Holme, J. Saramki (Springer, Berlin, Heidelberg, 2013), pp. 295−313

  10. T. Takaguchi, N. Masuda, P. Holme, PLoS ONE 8, e68629 (2013)

    Article  ADS  Google Scholar 

  11. L.E.C. Rocha, V.D. Blondel, PLoS Comput. Biol. 9, e1002974 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    Article  ADS  Google Scholar 

  13. H.H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Phys. Rev. X 4, 011041 (2014)

    Google Scholar 

  14. H.H.K. Lentz, T. Selhorst, I.M. Sokolov, Phys. Rev. Lett. 110, 118701 (2013)

    Article  ADS  Google Scholar 

  15. R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)

    Article  ADS  Google Scholar 

  16. R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3, 177 (2015)

    Article  MathSciNet  Google Scholar 

  17. I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 5, 5024 (2014)

    Article  ADS  Google Scholar 

  18. M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, R. Lambiotte, Nat. Commun. 5, 4630 (2014)

    Article  ADS  Google Scholar 

  19. R. Pan, J. Saramäki, Phys. Rev. E 84, 1 (2011)

    Google Scholar 

  20. H. Kim, R. Anderson, Phys. Rev. E 85, 1 (2012)

    Google Scholar 

  21. T. Takaguchi, Y. Yano, Y. Yoshida, Eur. Phys. J. B 89, 35 (2015)

    Article  MathSciNet  Google Scholar 

  22. D. Kempe, J. Kleinberg, A. Kumar, in Proceedings of the thirty-second annual ACM symposium on Theory of computing ACM, 2000, pp. 504−513

  23. N.G. de Bruijn, Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758764 (1946)

    Google Scholar 

  24. B. Blonder, A. Dornhaus, PLoS ONE 6, e20298 (2011)

    Article  ADS  Google Scholar 

  25. R. Michalski, S. Palus, P. Kazienko, in Business Information Systems, Lecture notes in business information processing, edited by W. Abramowicz (Springer, Berlin, Heidelberg, 2011), Vol. 87, pp. 197–206

  26. P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Regis, B.A. Kim, B. Comte, N. Voirin, PLoS ONE 8, e73970 (2013)

    Article  ADS  Google Scholar 

  27. N. Eagle, A. (Sandy) Pentland, Personal Ubiquitous Comput. 10, 255 (2006)

    Article  Google Scholar 

  28. Transport for London, Rolling Origin and Destination Survey (RODS) database (2014)

  29. RITA TransStat Origin and Destination Survey database, available online 2014

  30. L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  31. S. Borgatti, M. Everett, J. Johnson, Analyzing Social Networks (SAGE Publications, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Scholtes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholtes, I., Wider, N. & Garas, A. Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities. Eur. Phys. J. B 89, 61 (2016). https://doi.org/10.1140/epjb/e2016-60663-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60663-0

Keywords

Navigation