Skip to main content
Log in

Scaling properties in time-varying networks with memory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The formation of network structure is mainly influenced by an individual node’s activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  2. P. Holme, Eur. Phys. J. B 88, 234 (2015)

    Article  ADS  Google Scholar 

  3. I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 5, 6024 (2014)

    Article  Google Scholar 

  4. P. Holme, Phys. Rev. E 71, 046119 (2005)

    Article  ADS  Google Scholar 

  5. A. Gautreau, A. Barrat, M. Barthélemy, Proc. Natl. Acad. Sci. 106, 8847 (2009)

    Article  ADS  Google Scholar 

  6. N. Eagle, A. (Sandy) Pentland, Personal Ubiquitous Comput. 10, 255 (2006)

    Article  Google Scholar 

  7. C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.F. Pinton, A. Vespignani, PLoS One 5, e11596 (2010)

    Article  ADS  Google Scholar 

  8. G. Kossinets, D.J. Watts, Science 311, 88 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.F. Pinton, M. Quaggiotto, W. Van den Broeck, C. Régis, B. Lina, P. Vanhems, PLoS One 6, e23176 (2011)

    Article  ADS  Google Scholar 

  10. A. Barrat, C. Cattuto, V. Colizza, F. Gesualdo, L. Isella, E. Pandolfi, J.F. Pinton, L. Ravá, C. Rizzo, M. Romano, J. Stehlé, A. Tozzi, W. Van den Broeck, Eur. Phys. J. Special Topics 222, 1295 (2013)

    Article  ADS  Google Scholar 

  11. A. Barrat, C. Cattuto, A.E. Tozzi, P. Vanhems, N. Voirin, Clin. Microbiol. Infection 20, 10 (2014)

    Article  Google Scholar 

  12. L.E.C. Rocha, F. Liljeros, P. Holme, PLoS One 7, e1001109 (2011)

    Google Scholar 

  13. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  14. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  15. H.H.K. Lentz, T. Selhorst, I.M. Sokolov, Phys. Rev. Lett. 110, 118701 (2013)

    Article  ADS  Google Scholar 

  16. N. Masuda, K. Klemm, V.M. Eguíluz, Phys. Rev. Lett. 111, 188701 (2013)

    Article  ADS  Google Scholar 

  17. E. Valdano, L. Ferreri, C. Poletto, V. Colizza, Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  18. A.L. Barabasi, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  19. M. Rosvall, C.T. Bergstrom, PLoS One 5, e8694 (2010)

    Article  ADS  Google Scholar 

  20. R. Caceres, T. Berger-Wolf, R. Grossman, 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), (2011), pp. 925–932

  21. B. Min, K.I. Goh, Understanding Complex Systems, in Temporal Networks, edited by P. Holme, J. Saramki (Springer, Berlin, Heidelberg, 2013), pp. 41–64

  22. J.I. Perotti, H.H. Jo, P. Holme, J. Saramäki, arXiv:1411.5553 (2014)

  23. N. Perra, B. Gonalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  24. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

    Article  ADS  Google Scholar 

  25. M. Karsai, K. Kaski, A.L. Barabási, J. Kertész, Sci. Rep. 2, 397 (2012)

    Article  ADS  Google Scholar 

  26. M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    Article  ADS  Google Scholar 

  27. C.L. Vestergaard, M. Génois, A. Barrat, Phys. Rev. E 90, 042805 (2014)

    Article  ADS  Google Scholar 

  28. A. Moinet, M. Starnini, R. Pastor-Satorras, Phys. Rev. Lett. 114, 108701 (2015)

    Article  ADS  Google Scholar 

  29. C. Song, T. Koren, P. Wang, A.L. Barabasi, Nat. Phys. 6, 818 (2010)

    Article  Google Scholar 

  30. G. Laurent, J. Saramäki, M. Karsai, arXiv:1506.00393 (2015)

  31. A.D. Medus, C.O. Dorso, J. Stat. Mech.: Theor. Exp. 2014, P09009 (2014)

    Article  Google Scholar 

  32. SocioPatterns website, http://www.sociopatterns.org/

  33. L.E.C. Rocha, F. Liljeros, P. Holme, Proc. Natl. Acad. Sci. 107, 5706 (2010)

    Article  ADS  Google Scholar 

  34. H. Ebel, L.I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)

    Article  ADS  Google Scholar 

  35. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    Article  ADS  Google Scholar 

  36. J. Saramäki, P. Holme, arXiv:1508.00693 (2015)

  37. A. Vespignani, Science 325, 425 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Eubank, H. Guclu, V.S. Anil Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)

    Article  ADS  Google Scholar 

  39. J. Ginsberg, M.H. Mohebbi, R.S. Patel, L. Brammer, M.S. Smolinski, L. Brilliant, Nature 457, 1012 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meesoon Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Ha, M. & Jeong, H. Scaling properties in time-varying networks with memory. Eur. Phys. J. B 88, 315 (2015). https://doi.org/10.1140/epjb/e2015-60662-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60662-7

Keywords

Navigation