Skip to main content
Log in

Tunable terahertz bistability with temperature in photonic crystals containing an InSb layer and coupled nonlinear defects

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we investigate the terahertz bistability behavior in a photonic crystal doped with an InSb layer and coupled nonlinear defects by employing the modified transfer matrix method. It is demonstrated that the switch-up threshold for bistability can be strongly controlled by ambient temperature without changing the structure of photonic multilayer. The switch-up threshold increases with increasing temperature to a certain value. No dramatic changes are observed in switch-down threshold with increasing the ambient temperature. Further increase of temperature from 309 K to 311 K leads to the strong reduction of switch-up threshold. Our results reveal that the switch-up threshold for the case T = 311 K is approximately 3000 times lower than that of the case T = 309 K. This sensitivity to temperature can have potential applications in terahertz devices. When temperature increases from 309 K, both switch-up and switch-down threshold increase. However, the switch-down threshold indicates much smaller changes compared to the switch-up threshold. Furthermore, we investigate the effect of incident angle on the bistability behavior. It is shown that the temperature at which the lowest value of switching powers is achieved depends on the incident angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton University Press, Princeton, 1995)

  2. J. Martorell, R. Vilaseca, R. Corbalan, Appl. Phys. Lett. 70, 702 (1997)

    Article  ADS  Google Scholar 

  3. M. Scalora, M.J. Bloemer, A.S. Manka, J.P. Dowling, C.M. Bowden, R. Viswanathan, J.W. Haus, Phys. Rev. A 56, 3166 (1997)

    Article  ADS  Google Scholar 

  4. J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, R. Reinisch, Phys. Rev. B 44, 8214 (1991)

    Article  ADS  Google Scholar 

  5. Y. Jiang, Fiber Integr. Opt. 30, 192 (2011)

    Article  Google Scholar 

  6. P. Delaye, M. Astic, R. Frey, G. Roosen, J. Opt. Soc. Am. B 22, 2494 (2005)

    Article  ADS  Google Scholar 

  7. A.V. Andreev, A.V. Balakin, A.B. Kozlov, I.A. Ozheredov, I.R. Prudnikov, A.P. Shkurinov, P. Masselin, G. Mouret, J. Opt. Soc. Am. B 19, 1865 (2002)

    Article  ADS  Google Scholar 

  8. J. He, M. Cada, Appl. Phys. Lett. 61, 2150 (1992)

    Article  ADS  Google Scholar 

  9. R. Wang, J. Dong, D.Y. Xing, Phys. Rev. E 55, 6301 (1997)

    Article  ADS  Google Scholar 

  10. E. Lidorikis, K. Busch, Q. Li, C.T. Chan, C.M. Soukoulis, Phys. Rev. B 56, 15090 (1997)

    Article  ADS  Google Scholar 

  11. H. Inouye, Y. Kanemitsu, Appl. Phys. Lett. 82, 1155 (2003)

    Article  ADS  Google Scholar 

  12. S.D. Gupta, G.S. Agarwal, J. Opt. Soc. Am. B 4, 691 (1987)

    Article  ADS  Google Scholar 

  13. P. Hou, Y. Chen, J. Shi, M. Shen, Q. Wang, Opt. Commun. 273, 441 (2007)

    Article  ADS  Google Scholar 

  14. B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986)

    Article  ADS  Google Scholar 

  15. F.J. Fraile-Peliez, J. Capmany, M.A. Muriel, Opt. Lett. 16, 907 (1991)

    Article  ADS  Google Scholar 

  16. H. Li, K. Ogusu, Opt. Commun. 157, 27 (1998)

    Article  ADS  Google Scholar 

  17. Na Dou, Chunfei Li, Opt. Commun. 281, 2238 (2008)

    Article  ADS  Google Scholar 

  18. S. Tofighi, S. Safari Farshemi, B. Sajjad, F. Shahshahani, A.R. Bahrampour, Appl. Opt. 51, 7016 (2012)

    Article  ADS  Google Scholar 

  19. X.K. Kong, S.B. Liu, H.F. Zhang, S.Y. Wang, B.R. Bian, Y. Dai, J. Select. Topics Quantum Electron. 19, 8401407 (2013)

    Article  Google Scholar 

  20. H. Mehdian, Z. Mohammadzahery, A. Hasanbeigi, Phys. Plasmas 21, 012101 (2014)

    Article  ADS  Google Scholar 

  21. P. Halevi, F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875 (2000)

    Article  ADS  Google Scholar 

  22. H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957)

    Article  ADS  Google Scholar 

  23. R.W. Cunningham, J.B. Gruber, J. Appl. Phys. 41, 1804 (1970)

    Article  ADS  Google Scholar 

  24. M. Oszwaldowski, M. Zimple, J. Phys. Chem. Solids 49, 1179 (1988)

    Article  ADS  Google Scholar 

  25. J.G. Rivas, C. Janke, P.H. Bolivar, H. Kurz, Opt. Exp. 13, 847 (2005)

    Article  ADS  Google Scholar 

  26. X. Dai, Y. Xiang, S. Wen, H. He, J. Appl. Phys. 109, 053104 (2011)

    Article  ADS  Google Scholar 

  27. H. Takeda, K. Yoshino, Opt. Commun. 219, 177 (2003)

    Article  ADS  Google Scholar 

  28. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, W. Zhang, Opt. Commun. 284, 3129 (2011)

    Article  ADS  Google Scholar 

  29. C. Liu, J. Ye, Y. Zhang, Opt. Commun. 283, 865 (2010)

    Article  ADS  Google Scholar 

  30. A. Ghasempour Ardakani, Appl. Opt. 52, 4228 (2013)

    Article  Google Scholar 

  31. A. Ghasempour Ardakani, Eur. Phys. J. B 88, 166 (2015)

    Article  ADS  Google Scholar 

  32. G.S. Agarwal, S.D. Gupta, Opt. Lett. 12, 829 (1987)

    Article  ADS  Google Scholar 

  33. P.K. Kwan, Y.Y. Lu, Opt. Commun. 238, 169 (2004)

    Article  ADS  Google Scholar 

  34. C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, L. Shutian, Opt. Commun. 209, 491 (2002)

    Article  ADS  Google Scholar 

  35. A. Ghasempour Ardakani, J. Opt. Soc. Am. B 31, 332 (2014)

    Article  ADS  Google Scholar 

  36. M. Born, E. Wolf, in Principles of Optics (Pergamon, Oxford, 1989), pp. 38–74

  37. J.T. Liu, N.H. Liu, J. Li, X.J. Li, J.H. Huang, Appl. Phys. Lett. 101, 052104 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghasempour Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasempour Ardakani, A., Kalantari, T. & Nadgaran, H. Tunable terahertz bistability with temperature in photonic crystals containing an InSb layer and coupled nonlinear defects. Eur. Phys. J. B 88, 241 (2015). https://doi.org/10.1140/epjb/e2015-60524-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60524-4

Keywords

Navigation