Skip to main content
Log in

Numerical tools for obtaining power-law representations of heavy-tailed datasets

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Many empirical datasets have highly skewed, non-Gaussian, heavy-tailed distributions, dominated by a relatively small number of data points at the high end of the distribution. Consistent with their role as stable distributions, power laws have frequently been proposed to model such datasets. However there are physical situations that require distributions with finite means. Such situations may call for power laws with high-end cutoffs. Here, I present a maximum-likelihood technique for determining an optimal cut-off power law to represent a given dataset. I also develop a new statistical test of the quality of fit. Results are demonstrated for a number of benchmark datasets. Non-power-law datasets can frequently be represented by power laws, but this is a trivial result unless the dataset spans a broad domain. Nevertheless, I demonstrate that there are non-power-law distributions, including broad log-normal distributions, whose tails can be fit to power laws over many orders of magnitude. Therefore, caution is called for whenever power laws are invoked to represent empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1983)

  2. M.E.J. Newman, Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  3. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. E. Barkai, Y. Garini, R. Metzler, Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  5. M.P.H. Stumpf, M.A. Porter, Science 335, 665 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. V.M. Zolotarev, in One-Dimensional Stable Distributions, Translations of Mathematical Monographs (American Mathematical Society, Providence, 1986), Vol. 65

  7. M. Levy, S. Solomon, Physica A 242, 90 (1997)

    Article  ADS  Google Scholar 

  8. S. Redner, Eur. Phys. J. B 4, 131 (1998)

    Article  ADS  Google Scholar 

  9. A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000)

    Article  ADS  Google Scholar 

  10. A. Dragulescu, V.M. Yakovenko, Physica A 299, 213 (2001)

    Article  ADS  MATH  Google Scholar 

  11. P. Kroupa, Science 295, 82 (2002)

    Article  ADS  Google Scholar 

  12. P. Lukasiewicz, A. Orlowski, Physica A 344, 146 (2004)

    Article  ADS  Google Scholar 

  13. S. Sinha, Physica A 359, 555 (2006)

    Article  ADS  Google Scholar 

  14. M.L. Mansfield, to be submitted

  15. R.A. Alvarez, S.W. Pacala, J.J. Winebrake, W.L. Chameides, S.P. Hamburg, Proc. Natl. Acad. Sci. USA 109, 6435 (2012)

    Article  ADS  Google Scholar 

  16. A.S. Katzenstein, L.A. Doezema, I.J. Simpson, D.R. Blake, F.S. Rowland, Proc. Natl. Acad. Sci. USA 100, 11975 (2013)

    Article  ADS  Google Scholar 

  17. A.R. Brandt, G.A. Heath, E.A. Kort, F. O’Sullivan, G. Pétron, S.M. Jordaan, P. Tans, J. Wilcox, A.M. Gopstein, D. Arent, S. Wofsy, N.J. Brown, R. Bradley, G.D. Stucky, D. Eardley, R. Harriss, Science 343, 733 (2014)

    Article  ADS  Google Scholar 

  18. S.M. Miller, S.C. Wofsy, A.M. Michalak, E.A. Kort, A.E. Andrews, S.C. Biraud, E.J. Dlugokencky, J. Eluszkiewicz, M.L. Fischer, G. Janssens-Maenhout, B.R. Miller, J.B. Miller, S.A. Montzka, T. Nehrkorn, C. Sweeney, Proc. Natl. Acad. Sci. USA 110, 20018 (2013)

    Article  ADS  Google Scholar 

  19. A. Karion, C. Sweeney, G. Pétron, G. Frost, M. Hardesty, J. Kofler, B.R. Miller, T. Newberger, S. Wolter, R. Banta, A. Brewer, E. Dlugokencky, P. Lang, S.A. Montzka, R. Schnell, P. Tans, M. Trainer, R. Zamora, S. Conley, Geophys. Res. Lett. 40, 4393 (2013)

    Article  ADS  Google Scholar 

  20. M.L. Goldstein, S.A. Morris, G.G. Yen, Eur. Phys. J. B 41, 255 (2004)

    Article  ADS  Google Scholar 

  21. I.M. Charkravarti, R.G. Laha, J. Roy, in Handbook of Methods of Applied Statistics (Wiley, New York, 1967), Vol. 1

  22. M. Abramowitz, I.A. Stegen, Handbook of Mathematical Functions (Dover, New York, 1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Mansfield.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansfield, M. Numerical tools for obtaining power-law representations of heavy-tailed datasets. Eur. Phys. J. B 89, 16 (2016). https://doi.org/10.1140/epjb/e2015-60452-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60452-3

Keywords

Navigation