Skip to main content
Log in

Spin- and valley-dependent transport properties for metal-silicene-metal junctions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Detailed knowledge relating to the interactions between silicene and normal metal is crucial to understanding silicene growth on metal surfaces and metal/silicene interfaces in nanoelectronic devices. In this work, we study the valley- and spin-dependent transport properties of a metal/silicene/metal junction (MSM) with end and side metal-silicene contacts, respectively, where the central silicene sheet is simultaneously in proximity to a ferromagnet and a perpendicular electric field. By connecting the wave amplitudes obeying the lattice Schrödinger equation for the interfaces within the tight-binding model, the tunable conductance of both end-contacted (EC) and side contacted (SC) MSM junctions have been calculated. The current through MSM junctions is spin and valley polarized due to the coupling between valley and spin degrees of freedom, and the conductance and polarization show oscillating behavior as a function of the length of the silicene sheet. In particular, we find that the full spin and valley polarized conductance can be achieved by introducing proper electric and exchange fields. Further, the conductance is heavily dependent on the hopping integrals of simple metal, silicene and metal/silicene interfaces for EC junctions, and as long as the hopping integrals satisfy certain condition (with suitable incident energy) there is no difference in the transport between EC and SC junctions. The findings here may be meaningful in understanding the nature of metal/silicene interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Lay, B. Aufray, C. Leandri, H. Oughaddou, J.P. Biberian, P. DePadova, M.E. Davila, B. Ealet, A. Kara, Appl. Surf. Sci. 256, 524 (2009)

    Article  ADS  Google Scholar 

  2. A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012)

    Article  ADS  Google Scholar 

  3. P. Miroó, M. Audiffred, T. Heine, Chem. Soc. Rev. 43, 6537 (2014)

    Article  Google Scholar 

  4. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Article  ADS  Google Scholar 

  5. Cheng-Cheng Liu, Hua Jiang, Yugui Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  6. N.J. Roome, J.D. Carey, ACS Appl. Mater. Interfaces 6, 7743 (2014)

    Article  Google Scholar 

  7. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  8. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 155501 (2012)

    Article  Google Scholar 

  9. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y.Y. Takamura, Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  10. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Carmen Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 109, 056804 (2012)

    Article  Google Scholar 

  11. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  12. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  13. Zeyuan Ni, Qihang Liu, Kechao Tang, Jiaxin Zheng, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, Jing Lu, Nano Lett. 12, 113 (2012)

    Article  ADS  Google Scholar 

  14. T. Yokoyama, Phys. Rev. B 87, 241409(R) (2013)

    Article  ADS  Google Scholar 

  15. T. Yokoyama, New J. Phys. 16, 085005 (2014)

    Article  ADS  Google Scholar 

  16. Ai Yamakage, Motohiko Ezawa, Yukio Tanaka, Naoto Nagaosa, Phys. Rev. B 88, 085322 (2013)

    Article  ADS  Google Scholar 

  17. Y.-P. Wang, J.N. Fry, H.-P. Cheng, Phys. Rev. B 88, 125428 (2013)

    Article  ADS  Google Scholar 

  18. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, A. Bansil, Nat. Commun. 4, 1500 (2013)

    Article  ADS  Google Scholar 

  19. Ya.M. Blanter, I. Martin, Phys. Rev. B 76, 155433 (2007)

    Article  ADS  Google Scholar 

  20. H. Schomerus, Phys. Rev. B 76, 045433 (2007)

    Article  ADS  Google Scholar 

  21. J. Hammer, W. Belzig, Phys. Rev. B 87, 125422 (2013)

    Article  ADS  Google Scholar 

  22. A.D. Wiener, M. Kindermann, Phys. Rev. B 84, 245420 (2011)

    Article  ADS  Google Scholar 

  23. J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006)

    Article  ADS  Google Scholar 

  24. K.C. Fong, E.E. Wollman, H. Ravi, W. Chen, A.A. Clerk, M.D. Shaw, H.G. Leduc, K.C. Schwab, Phys. Rev. X 3, 041008 (2013)

    Google Scholar 

  25. Y. Matsuda, W.-Q. Deng, W.A. Goddard III, J. Phys. Chem. C. 114, 17845 (2010)

    Article  Google Scholar 

  26. S. Krompiewski, Nanotechnol. 22, 445201 (2011)

    Article  ADS  Google Scholar 

  27. A. Molle, C. Grazianetti, D. Chiappe, E. Cinquanta, E. Cianci, G. Tallarida, M. Fanciulli, Adv. Funct. Mater. 23, 4340 (2013)

    Article  Google Scholar 

  28. B. Van Duppen, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 90, 035142 (2014)

    Article  ADS  Google Scholar 

  29. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2014)

    Article  ADS  Google Scholar 

  30. J. Klinkhammer, M. Schlipf, F. Craes, S. Runte, T. Michely, C. Busse, Phys. Rev. Lett. 112, 016803 (2014)

    Article  ADS  Google Scholar 

  31. J. Klinkhammer, D.F. Föster, S. Schumacher, H.P. Oepen, T. Michely, C. Busse, Appl. Phys. Lett. 103, 131601 (2013)

    Article  ADS  Google Scholar 

  32. A.G. Swartz, P.M. Odenthal, Y. Hao, R.S. Ruoff, R.K. Kawakami, ACS Nano 6, 10063 (2012)

    Article  Google Scholar 

  33. Guanghui Cheng, Laiming Wei, Long Cheng, Haixing Liang, Xiaoqiang Zhang, Hui Li, Guolin Yu, Changgan Zeng, Appl. Phys. Lett. 105, 133111 (2014)

    Article  ADS  Google Scholar 

  34. H. Haugen, D. Huertas-Hernando, A. Brataas, Phys. Rev. B 77, 115406 (2008)

    Article  ADS  Google Scholar 

  35. L. Majidi, M. Zareyan, Phys. Rev. B 83, 115422 (2013)

    Article  ADS  Google Scholar 

  36. Xiao-Xiao Guo, De Liu, Yu-Xian Lia, Appl. Phys. Lett. 98, 242101 (2011)

    Article  ADS  Google Scholar 

  37. Yu Wang, Appl. Phys. Lett. 104, 032105 (2014)

    Article  ADS  Google Scholar 

  38. G.J. Xu, Y.M. Zhu, B.H. Wu, X.G. Xu, J.C. Cao, J. Appl. Phys. 112, 073716 (2012)

    Article  ADS  Google Scholar 

  39. B. Soodchomshom, J. Appl. Phys. 115, 023706 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhou, M., Liu, G. et al. Spin- and valley-dependent transport properties for metal-silicene-metal junctions. Eur. Phys. J. B 88, 243 (2015). https://doi.org/10.1140/epjb/e2015-60316-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60316-x

Keywords

Navigation