Skip to main content
Log in

A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper is devoted to the mechanics of fractally heterogeneous media. A model of fractal continuum with a fractional number of spatial degrees of freedom and a fractal metric is suggested. The Jacobian matrix of the fractal continuum deformation is defined and the kinematics of deformations is elucidated. The symmetry of the Cauchy stress tensor for continua with the fractal metric is established. A homogenization framework accounting for the connectivity, topological, and metric properties of fractal domains in heterogeneous materials is developed. The mapping of mechanical problems for fractal media into the corresponding problems for the fractal continuum is discussed. Stress and strain distributions in elastic fractal bars are analyzed. An approach to fractal bar optimization is proposed. Some features of acoustic wave propagation and localization in fractal media are briefly highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sahimi, in Heterogeneous Materials (Springer, New York, 2003), Vol. II

  2. D. Cioranescu, P. Donato, An Introduction to Homogenization (Oxford University Press, Oxford, 1999)

  3. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1999)

  4. G. Korvin, Fractal Models in the Earth Sciences (Elsevier, New York, 1992)

  5. K.J. Falconer, Fractal Geometry – Mathematical Foundations and Applications (Wiley, New York, 2003)

  6. K. Oleschko, G. Korvin, A.S. Balankin, R.V. Khachaturov, L. Flores, B. Figueroa, J. Urrutia, F. Brambila, Phys. Rev. Lett. 89, 188501 (2002)

    Article  ADS  Google Scholar 

  7. A.S. Balankin, T. López, R. Alexander-Katz, A. Córdova, O. Susarrey, R. Montiel, Langmuir 19, 3628 (2003)

    Article  Google Scholar 

  8. A. Carpinteri, P. Cornetti, N. Pugno, A. Sapora, Adv. Sci. Technol. 58, 54 (2008)

    Article  Google Scholar 

  9. A.S. Balankin, A. Horta, G. García, F. Gayosso, H. Sanchez, C.L. Martínez-González, Phys. Rev. E 87, 052806 (2013)

    Article  ADS  Google Scholar 

  10. F. Yang, Fuel 115, 378 (2013)

    Article  Google Scholar 

  11. J.-F. Gouyet, Physics and Fractal Structures (Springer, Paris, 1996)

  12. D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractal and Disordered Systems (Cambridge University Press, Cambridge, 2002)

  13. F.H. Stillinger, J. Math. Phys. 18, 1224 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. B. O’Shaughnessy, I. Procaccia, Phys. Rev A 32, 3073 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. P.D. Panagiotopoulos, O. Panagouli, Chaos Solitons Fractals 8, 253 (1997)

    Article  ADS  MATH  Google Scholar 

  16. A.S. Balankin, Eng. Fract. Mech. 57, 135 (1997)

    Article  Google Scholar 

  17. A. Carpinteri, P. Cornetti, Chaos Solitons Fractals 13, 85 (2002)

    Article  ADS  MATH  Google Scholar 

  18. V.E. Tarasov, Phys. Lett. A 336, 167 (2005)

    Article  ADS  MATH  Google Scholar 

  19. J. Li, M. Ostoja-Starzewski, Proc. Royal Soc. A 465, 2521 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. S.I. Muslih, O.P. Agrawal, J. Math. Phys. 50, 123501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.I. Muslih, D. Baleanu, Romanian Rep. Phys. 62, 689 (2010)

    Google Scholar 

  22. V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)

  23. X.-J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)

  24. M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic fields and waves in fractional dimensional space (Springer, New York, 2012)

  25. C.S. Drapaca, S. Sivaloganathan, J. Elasticity 107, 105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. A.S. Balankin, B. Espinoza, Phys. Rev. E 85, 056314 (2012)

    Article  ADS  Google Scholar 

  27. A.S. Balankin, B. Mena, J. Patiño, D. Morales, Phys. Lett. A 377, 783 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. A.S. Balankin, Phys. Lett. A 377, 2535 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.S. Balankin, Phys. Lett. A 377, 1606 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.S. Balankin, B. Espinoza, Phys. Rev. E 88, 057002 (2013)

    Article  ADS  Google Scholar 

  31. M. Schmutz, Europhys. Lett. 2, 897 (1986)

    Article  ADS  Google Scholar 

  32. A. Dathea, M. Thullner, Geoderma 129, 279 (2005)

    Article  Google Scholar 

  33. A. Neimark, Physica A 191, 258 (1992)

    Article  ADS  Google Scholar 

  34. M. Ciccotti, F. Mulargia, Phys. Rev. E 65, 037201 (2002)

    Article  ADS  Google Scholar 

  35. F.M. Borodich, Z. Feng, Z. Angew. Math. Phys. 61, 21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Bianco, S. Chibbaro, D. Vergni, A. Vulpiani, Phys. Rev. E 87, 062811 (2013)

    Article  ADS  Google Scholar 

  37. A.S. Balankin, B. Mena, C.L. Martínez-González, D. Morales, Phys. Rev. E 86, 052101 (2012)

    Article  ADS  Google Scholar 

  38. U. Mosco, Phys. Rev. Lett. 79, 4067 (1997)

    Article  ADS  Google Scholar 

  39. G. Calcagni, Phys. Rev. E 87, 012123 (2013)

    Article  ADS  Google Scholar 

  40. L.V. Meisel, Phys. Rev. A 45, 654 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Miyazima, H.E. Stanley, Phys. Rev. B 35, 8898 (1987)

    Article  ADS  Google Scholar 

  42. J. Feder, Fractals (Plenum Press, New York, 1988)

  43. G. Calcagni, J. High Energy Phys. 2012, 65 (2012)

    Article  MathSciNet  Google Scholar 

  44. W. Chen, Chaos Solitons Fractals 28, 923 (2006)

    Article  ADS  MATH  Google Scholar 

  45. A.S. Balankin, B. Espinoza, Phys. Rev. E 83, 025302(R) (2012)

    Article  Google Scholar 

  46. R. Abreu-Blaya, J. Bory-Reyes, T. Moreno-García, D. Peña-Peña, Math. Meth. Appl. Sci. 31, 849 (2008)

    Article  MATH  Google Scholar 

  47. P. Moon, D.E. Spencer, J. Franklin Institute 256, 551 (1953)

    Article  MathSciNet  Google Scholar 

  48. C. Palmer, P.N. Stavrinou, J. Phys. A 37, 6987 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. X.F. He Phys. Rev. B 43, 2063 (1991)

    Article  ADS  Google Scholar 

  50. P. Christol, P. Lefebvre, H. Mathieu, J. Appl. Phys. 74, 5626 (1993)

    Article  ADS  Google Scholar 

  51. A. Thilagam, A. Matos-Abiague, J. Phys.: Condens. Matter 16, 3981 (2004)

    ADS  Google Scholar 

  52. A. Yavari, J.E. Marsden, Rep. Math. Phys. 63, 1 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. A. Yavari, A. Goriely, Arch. Rational Mech. Anal. 205, 59 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. P. Topping, Lectures on the Ricci Flow (Cambridge University Press, New York, 2006)

  55. A. Yavari, J. Nonlinear Sci. 20, 781 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. A. Ozakin, A. Yavari, J. Math. Phys. 51, 032902 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  57. B.N. Obyfrlea, Advanced Particle Physics, V.I: Particles, Fields, and Quantum Electrodynamics (Taylor & Francis, New York, 2011)

  58. A. Riotto, Lecture Notes on Cosmology (Université de Genève, Genève, 2013)

  59. D. Aubram, Differential Geometry Applied to Continuum Mechanics (Shaker Verlag, Berlin, 2009)

  60. A.C. Eringen, Microcontinuum field theories I: Foundations and solids (Springer, Berlin, 2009)

  61. G.T. Mase, G.E. Mase, Continuum Mechanics for Engineers, 2nd edn. (CRC Press LLC, New York, 1999)

  62. D. Rayneau-Kirkhope, Y. Mao, R. Farr, Phys. Rev. E 87, 063204 (2013)

    Article  ADS  Google Scholar 

  63. A. Carpinteri, B. Chiaia, P. Cornetti, Mater. Sci. Eng. A 365, 235 (2004)

    Article  Google Scholar 

  64. H. Khezrzadeh, M. Mofid, Theor. Appl. Fracture Mech. 46, 46 (2006)

    Article  Google Scholar 

  65. A. Carpinteri, P. Cornetti, A. Sapora, Z. Angew. Math. Mech. 89, 207 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  66. E. Larose, L. Margerin, B.A. Van Tiggelen, M. Campillo, Phys. Rev. Lett. 93, 048501 (2004)

    Article  ADS  Google Scholar 

  67. J.F. Kelly, R.J. McGough, J. Acoust. Soc. Am. 126, 2072 (2009)

    Article  Google Scholar 

  68. A.M. García-García, E. Cuevas, Phys. Rev. B 82, 033412 (2010)

    Article  ADS  Google Scholar 

  69. T.A. Tafti, M. Sahimi, F. Aminzadeh, C.G. Sammis, Phys. Rev. E 87, 032152 (2013)

    Article  ADS  Google Scholar 

  70. F. Shahbazi, A. Bahraminasab, S.M.V. Allaei, M. Sahimi, M.R.R. Tabar, Phys. Rev. Lett. 94, 165505 (2005)

    Article  ADS  Google Scholar 

  71. A. Bahraminasab, S.M.V. Allaei, F. Shahbazi, M. Sahimi, M.D. Niry, M.R.R. Tabar, Phys. Rev. B 75, 064301 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Balankin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balankin, A.S. A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric. Eur. Phys. J. B 88, 90 (2015). https://doi.org/10.1140/epjb/e2015-60189-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60189-y

Keywords

Navigation