Skip to main content
Log in

Work distribution function for a Brownian particle driven by a nonconservative force

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We derive the distribution function of work performed by a harmonic force acting on a uniformly dragged Brownian particle subjected to a rotational torque. Following the Onsager and Machlup’s functional integral approach, we obtain the transition probability of finding the Brownian particle at a particular position at time t given that it started the journey from a specific location at an earlier time. The difference between the forward and the time-reversed form of the generalized Onsager-Machlup’s Lagrangian is identified as the rate of medium entropy production which further helps us develop the stochastic thermodynamics formalism for our model. The probability distribution for the work done by the harmonic trap is evaluated for an equilibrium initial condition. Although this distribution has a Gaussian form, it is found that the distribution does not satisfy the conventional work fluctuation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  2. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. (Springer, Berlin, 1998)

  3. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  MATH  Google Scholar 

  4. D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994)

    Article  ADS  Google Scholar 

  5. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  6. J. Kurchan, J. Phys. A 31, 3719 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. B. Derrida, J. Stat. Mech. 2007, P07023 (2007)

    Article  MathSciNet  Google Scholar 

  8. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  9. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  10. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  11. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  12. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. R.J. Harris, G.M. Schütz, J. Stat. Mech. 2007, P07020 (2007)

    Article  Google Scholar 

  14. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  15. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  ADS  MATH  Google Scholar 

  16. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  17. M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2013)

  19. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)

    Article  Google Scholar 

  20. R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003)

    Article  ADS  Google Scholar 

  21. R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004)

    Article  ADS  Google Scholar 

  22. F. Ritort, C. Bustamante, I. Tinoco Jr., Proc. Natl. Acad. Sci. USA 99, 13544 (2002)

    Article  ADS  Google Scholar 

  23. O. Mazonka, C. Jarzynski, arXiv:cond-mat/9912121v1 (1999)

  24. T. Speck, U. Seifert, Eur. Phys. J. B 43, 521 (2005)

    Article  ADS  Google Scholar 

  25. A. Imparato, L. Peliti, G. Pesce, G. Rusciano, A. Sasso, Phys. Rev. E 76, 050101(R) (2007)

    Article  ADS  Google Scholar 

  26. J. Farago, J. Stat. Phys. 107, 781 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. A. Imparato, L. Peliti, Europhys. Lett. 70, 740 (2005)

    Article  ADS  Google Scholar 

  28. S. Sabhapandit, Europhys. Lett. 96, 20005 (2011)

    Article  ADS  Google Scholar 

  29. S. Sabhapandit, Phys. Rev. E 85, 021108 (2012)

    Article  ADS  Google Scholar 

  30. C. Kwon, J.D. Noh, H. Park, Phys. Rev. E 83, 061145 (2011)

    Article  ADS  Google Scholar 

  31. J.D. Noh, C. Kwon, H. Park, Phys. Rev. Lett. 111, 130601 (2013)

    Article  ADS  Google Scholar 

  32. L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S. Machlup, L. Onsager, Phys. Rev. 91, 1512 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Phys. Rev. Lett. 87, 040601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 107, 635 (2002)

    Article  ADS  MATH  Google Scholar 

  36. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 123, 237 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. A. Imparato, L. Peliti, Phys. Rev. E 74, 026106 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 126, 1 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 130, 1 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 130, 633 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. E.G.D. Cohen, J. Stat. Mech. 2008, P07014 (2008)

    Article  Google Scholar 

  42. C. Maes, K. Netočný, B. Wynants, J. Phys. A 42, 365002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. B. Saha, S. Mukherji, J. Stat. Mech. 2014, P08014 (2014)

    Article  MathSciNet  Google Scholar 

  44. A. Engel, Phys. Rev. E 80, 021120 (2009)

    Article  ADS  Google Scholar 

  45. D. Nickelsen, A. Engel, Eur. Phys. J. B 82, 207 (2011)

    Article  ADS  Google Scholar 

  46. V.Y. Chernyak, M. Chertkov, C. Jarzynski, J. Stat. Mech. 2006, P08001 (2006)

    Article  Google Scholar 

  47. S. Ciliberto, S. Joubaud, A. Petrosyan, J. Stat. Mech. 2010, P12003 (2010)

    Article  Google Scholar 

  48. S. Joubaud, N.B. Garnier, S. Ciliberto, J. Stat. Mech. 2007, P09018 (2007)

    Article  Google Scholar 

  49. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989)

  50. F.W. Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986)

  51. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  52. P. Jop, A. Petrosyan, S. Ciliberto, Europhys. Lett. 81, 50005 (2008)

    Article  ADS  Google Scholar 

  53. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Mukherji.

Additional information

On leave from Department of Physics, Indian Institute of Technology, 208 016 Kanpur, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B., Mukherji, S. Work distribution function for a Brownian particle driven by a nonconservative force. Eur. Phys. J. B 88, 146 (2015). https://doi.org/10.1140/epjb/e2015-60179-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60179-1

Keywords

Navigation