Skip to main content
Log in

Current control in inertial Brownian motors by noise recycling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transport properties of an inertial Brownian motor were numerically studied in the presence of recycled noise, which is obtained by re-injecting a fraction of the primary white noise after a processing time, being introduced into the system in a multiplicative way. The simulation results indicate that various parameters such as the external driving force, the friction coefficient, the mass of the particle, the recycling strength, and the delay time can induce the current reversal phenomenon when the sign of the recycling strength is in agreement with the sign of the external bias force, otherwise the current reversal cannot be observed. Additionally, the asymptotic mean velocity as a function of the delay time of the recycled noise always shows a resonance-like behavior with the presence of a maximum current. These results demonstrate that the delay time and the recycling strength of the recycled noise can be used as the feasible and flexible control parameters for the amplitude and direction of the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi, R. Bartussek, Lect. Notes Phys. 476, 294 (1996)

    Article  ADS  Google Scholar 

  2. R.D. Astumian, Science 276, 917 (1997)

    Article  Google Scholar 

  3. P.S. Landa, P.V.E. McClintock, Phys. Rep. 323, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Reimann, Phys. Rep. 351, 57 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.D. Astumian, P. Hänggi, Phys. Today 55, 33 (2002)

    Article  Google Scholar 

  6. R. Bartussek, P. Hänggi, J.G. Kissner, Europhys. Lett. 28, 459 (1994)

    Article  ADS  Google Scholar 

  7. P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. (Leipzig) 14, 51 (2005)

    Article  ADS  MATH  Google Scholar 

  8. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  9. J. Maddox, Nature 368, 287 (1994)

    Article  ADS  Google Scholar 

  10. U. Henningsen, M. Schliwa, Nature 389, 93 (1997)

    Article  ADS  Google Scholar 

  11. P. Jung, J.G. Kissner, P. Hänggi, Phys. Rev. Lett. 76, 3436 (1996)

    Article  ADS  Google Scholar 

  12. F. Marchesoni, Phys. Lett. A 237, 126 (1998)

    Article  ADS  Google Scholar 

  13. B. Linder, L. Schimansky-Geier, P. Reimann, P. Hänggi, M. Nagaoka, Phys. Rev. E 59, 1417 (1999)

    Article  ADS  Google Scholar 

  14. A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 77, 031108 (2008)

    Article  ADS  Google Scholar 

  15. M.Q. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

    Article  ADS  Google Scholar 

  16. P. Reimann, Phys. Rep. 290, 149 (1997)

    Article  ADS  Google Scholar 

  17. R. Bartussek, P. Reimann, P. Hänggi, Phys. Rev. Lett. 76, 1166 (1996)

    Article  ADS  Google Scholar 

  18. F. Marchesoni, S. Savelev, Phys. Rev. E 80, 011120 (2009)

    Article  ADS  Google Scholar 

  19. D. Dan, A.M. Jaynnavar, Phys. Rev. E 66, 041106 (2002)

    Article  ADS  Google Scholar 

  20. L. Machura, M. Kostur, P. Talkner, J. Łuczka, P. Hänggi, Phys. Rev. Lett. 98, 040601 (2007)

    Article  ADS  Google Scholar 

  21. L.T. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  22. D. Wu, S.Q. Zhu, Phys. Lett. A 363, 202 (2007)

    Article  ADS  Google Scholar 

  23. Z.L. Jia, Chin. Phys. Lett. 25, 1209 (2008)

    Article  ADS  Google Scholar 

  24. Z.L. Jia, Physica A 387, 6247 (2008)

    Article  ADS  Google Scholar 

  25. Z.L. Jia, Phys. Scr. 81, 015002 (2010)

    Article  ADS  Google Scholar 

  26. Z.L. Jia, D.C. Mei, J. Stat. Mech. 2011, P10010 (2011)

    Article  Google Scholar 

  27. M. Borromeo, F. Marchesoni, Europhys. Lett. 68, 783 (2004)

    Article  ADS  Google Scholar 

  28. D. Hennig, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 79, 041117 (2009)

    Article  ADS  Google Scholar 

  29. X.X. Sun, L.R. Nie, P. Li, Europhys. Lett. 95, 50003 (2011)

    Article  ADS  Google Scholar 

  30. D. Wu, S.Q. Zhu, X.Q. Luo, Physica A 391, 1032 (2012)

    Article  ADS  Google Scholar 

  31. W. Guo, C.J. Wang, L.C. Du, D.C. Mei, Physica A 392, 4210 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. T.F. Gao, Z.G. Zheng, J.C. Chen, Chin. Phys. B 22, 080502 (2013)

    Article  ADS  Google Scholar 

  33. L. Machura, M. Kostur, J. Łuczka, Chem. Phys. 375, 445 (2010)

    Article  ADS  Google Scholar 

  34. M. Borromeo, F. Marchesoni, Europhys. Lett. 72, 362 (2005)

    Article  ADS  Google Scholar 

  35. M. Borromeo, P. Hänggi, F. Marchesoni, J. Phys.: Condens. Matter 17, S3709 (2005)

    ADS  Google Scholar 

  36. M. Borromeo, F. Marchesoni, Phys. Rev. E 73, 016142 (2006)

    Article  ADS  Google Scholar 

  37. M. Borromeo, F. Marchesoni, Phys. Rev. E 75, 041106 (2007)

    Article  ADS  Google Scholar 

  38. A.C. Chamgoué, R. Yamapi, P. Woafo, Eur. Phys. J. Plus 127, 59 (2012)

    Article  Google Scholar 

  39. C.H. Zeng, H. Wang, S. Qing, J.H. Hu, K.Z. Li, Eur. Phys. J. B 85, 347 (2012)

    Article  ADS  Google Scholar 

  40. Z.L. Jia, D.C. Mei, Eur. Phys. J. B 85, 139 (2012)

    Article  ADS  Google Scholar 

  41. J. Ma, Z.H. Hou, H.W. Xin, Eur. Phys. J. B 69, 101 (2009)

    Article  ADS  Google Scholar 

  42. Z.K. Sun, X.L. Yang, W. Xu, Phys. Rev. E 85, 061125 (2012)

    Article  ADS  Google Scholar 

  43. Z.L. Jia, C.Y. Yang, D.C. Mei, Chin. J. Phys. 52, 1069 (2014)

    Google Scholar 

  44. B. Caron et al., Class. Quantum Grav. 14, 1461 (1997)

    ADS  Google Scholar 

  45. J. Iwaniszewski, Phys. Rev. E 78, 021140 (2008)

    Article  ADS  Google Scholar 

  46. C.H. Zeng, H. Wang, L.R. Nie, Chaos 22, 033125 (2012)

    Article  ADS  Google Scholar 

  47. L. Machura, M. Kostur, P. Talkner, J. Łuczka, F. Marchesoni, P. Hänggi, Phys. Rev. E 70, 061105 (2004)

    Article  ADS  Google Scholar 

  48. J.M. Sancho, M.S. Miguel, S.L. Katz, J.D. Gunton, Phys. Rev. A 26, 1589 (1982)

    Article  ADS  Google Scholar 

  49. D.E. Knuth, in The Art of Computer Programming (Addison-Wesley, Reading, 1969), Vol. 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Lin Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, ZL., Li, KY., Li, C. et al. Current control in inertial Brownian motors by noise recycling. Eur. Phys. J. B 88, 59 (2015). https://doi.org/10.1140/epjb/e2015-60032-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60032-7

Keywords

Navigation