Skip to main content
Log in

Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  2. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  3. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10, 4279 (2010)

    Article  ADS  Google Scholar 

  4. D. Li, Y. Wu, R. Fang, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003)

    Article  ADS  Google Scholar 

  5. K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Adv. Energy Mater. 1, 713 (2011)

    Article  Google Scholar 

  6. G. Chen, Semicond. Semimet. 71, 203 (2001)

    Article  Google Scholar 

  7. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)

    Article  ADS  Google Scholar 

  8. D. Li, S.T. Huxtable, A.R. Abramsin, A. Majumdar, Trans. ASME 127, 108 (2005)

    Article  Google Scholar 

  9. P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009)

    Article  ADS  Google Scholar 

  10. C.J. Vineis, A. Shakouri, A. Majumdar, M.C. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  11. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  12. M. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gagna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  13. C.M. Jaworski, V. Kulbachinskii, J.P. Heremans, Phys. Rev. B 80, 125208 (2009)

    Article  ADS  Google Scholar 

  14. N. Neophytou, H. Kosina, Phys. Rev. B 83, 245305 (2011)

    Article  ADS  Google Scholar 

  15. N. Neophytou, H. Kosina, J. Electron. Mater. 41, 1305 (2012)

    Article  ADS  Google Scholar 

  16. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)

    Article  ADS  Google Scholar 

  17. T.B. Boykin, G. Klimeck, F. Oyafuso, Phys. Rev. B 69, 115201 (2004)

    Article  ADS  Google Scholar 

  18. G. Klimeck, S. Ahmed, B. Hansang, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, T.B. Boykin, R. Rahman, IEEE Trans. Electr. Dev. 54, 2079 (2007)

    Article  ADS  Google Scholar 

  19. G. Klimeck, S. Ahmed, N. Kharche, M. Korkusinski, M. Usman, M. Prada, T.B. Boykin, IEEE Trans. Electr. Dev. 54, 2090 (2007)

    Article  ADS  Google Scholar 

  20. N. Neophytou, A. Paul, M. Lundstrom, G. Klimeck, IEEE Trans. Elect. Dev. 55, 1286 (2008)

    Article  ADS  Google Scholar 

  21. N. Neophytou, A. Paul, G. Klimeck, IEEE Trans. Nanotechnol. 7, 710 (2008)

    Article  ADS  Google Scholar 

  22. N. Neophytou, M. Wagner, H. Kosina, S. Selberherr, J. Electron. Mater. 39, 1902 (2010)

    Article  ADS  Google Scholar 

  23. N. Neophytou, G. Klimeck, H. Kosina, J. Appl. Phys. 109, 053721 (2011)

    Article  ADS  Google Scholar 

  24. N. Neophytou, H. Kosina, J. Electron. Mater. 40, 753 (2011)

    Article  ADS  Google Scholar 

  25. N. Neophytou, H. Kosina, J. Appl. Phys. 112, 024305 (2012)

    Article  ADS  Google Scholar 

  26. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)

    Article  ADS  Google Scholar 

  27. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, J. Electron. Mater. 43, 1896 (2014)

    Article  ADS  Google Scholar 

  28. R. Kim, S. Datta, M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009)

    Article  ADS  Google Scholar 

  29. S. Lee, F. Oyafuso, P. Von, Allmen, G. Klimeck, Phys. Rev. B 69, 045316 (2004)

    Article  ADS  Google Scholar 

  30. N. Neophytou, H. Kosina, J. Comput. Electron. 11, 29 (2012)

    Article  Google Scholar 

  31. N. Neophytou, H. Kosina, Nano Lett. 10, 4913 (2010)

    Article  ADS  Google Scholar 

  32. N. Neophytou, H. Kosina, Phys. Rev. B 84, 085313 (2011)

    Article  ADS  Google Scholar 

  33. E.B. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, J. Appl. Phys. 104, 063711 (2008)

    Article  ADS  Google Scholar 

  34. S. Jin, M.V. Fischetti, T. Tang, J. Appl. Phys. 102, 83715 (2007)

    Article  Google Scholar 

  35. M.-S. Lee, S.D. Mahanti, Phys. Rev. B 85, 165149 (2012)

    Article  ADS  Google Scholar 

  36. Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Energy Environ. Sci. 5, 5246 (2012)

    Article  Google Scholar 

  37. A. Popescu, M.L. Woods, Appl. Phys. Lett. 97, 052102 (2010)

    Article  ADS  Google Scholar 

  38. H. Karamitaheri, N. Neophytou, M. Karami Taheri, R. Faez, H. Kosina, J. Electron. Mater. 42, 2091 (2013)

    Article  ADS  Google Scholar 

  39. H. Karamitaheri, N. Neophytou, H. Kosina, J. Appl. Phys. 115, 024302 (2014)

    Article  ADS  Google Scholar 

  40. Z. Aksamija, I. Knezevic, Phys. Rev. B 82, 045319 (2010)

    Article  ADS  Google Scholar 

  41. M. Luisier, J. Appl. Phys. 110, 074510 (2011)

    Article  ADS  Google Scholar 

  42. M. Luisier, Phys. Rev. B 86, 245407 (2012)

    Article  ADS  Google Scholar 

  43. D. Donadio, G. Galli, Nano Lett. 10, 847 (2010)

    Article  ADS  Google Scholar 

  44. E.B. Ramayya, L.N. Maurer, A.H. Davoody, I. Knezevic, Phys. Rev. B 86, 115328 (2012)

    Article  ADS  Google Scholar 

  45. T.T.M. Vo, A.J. Williamson, V. Lordi, G. Galli, Nano Lett. 8, 1111 (2008)

    Article  ADS  Google Scholar 

  46. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, G. Chen, Nano Lett. 11, 2225 (2011)

    Article  ADS  Google Scholar 

  47. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 12, 2077 (2012)

    Article  ADS  Google Scholar 

  48. B.M. Curtin, E.A. Codecido, S. Krämer, J.E. Bowers, Nano Lett. 13, 5503 (2013)

    Article  ADS  Google Scholar 

  49. N. Neophytou, H. Kosina, Appl. Phys. Lett. 105, 073119 (2014)

    Article  ADS  Google Scholar 

  50. W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, P. Yang, Nano Lett. 9, 1689 (2009)

    Article  ADS  Google Scholar 

  51. S. Roddaro, D. Ercolani, M.A. Safeen, S. Suomalainen, F. Rosella, F. Giazotto, L. Sorba, F. Beltram, Nano Lett. 13, 3638 (2013)

    Article  ADS  Google Scholar 

  52. J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, R. Chen, Nano Lett. 13, 1196 (2013)

    Article  ADS  Google Scholar 

  53. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, X.P.A. Gao, Nano Lett. 12, 6492 (2012)

    Article  ADS  Google Scholar 

  54. D. Narducci, B. Lorenzi, X. Zianni, N. Neophytou, S. Frabboni, G.C. Gazzadi, A. Roncaglia, F. Suriano, Phys. Stat. Sol. A 211, 1255 (2014)

    Article  Google Scholar 

  55. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

  56. J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)

    Article  ADS  Google Scholar 

  57. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Article  ADS  Google Scholar 

  58. Physical Properties of Semiconductors, http://www.ioffe.ru/SVA/

  59. G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electr. Dev. 30, 764 (1983)

    Article  Google Scholar 

  60. B. Lorenzi, D. Narducci, R. Tonini, S. Frabboni, G.C. Gazzadi, G. Ottaviani, N. Neophytou, X. Zianni, J. Electron. Mater. 43, 3812 (2014)

    Article  ADS  Google Scholar 

  61. M. Zervos, Z. Viskadourakis, G. Athanasopoulos, R. Flores, O. Conde, J. Giapintzakis, J. Appl. Phys. 115, 033709 (2014)

    Article  ADS  Google Scholar 

  62. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nat. Nanotechnol. 5, 718 (2010)

    Article  ADS  Google Scholar 

  63. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I.E. Kady, Nano Lett. 11, 107 (2011)

    Article  ADS  Google Scholar 

  64. S. Wolf, N. Neophytou, H. Kosina, J. Appl. Phys. 115, 204306 (2014)

    Article  ADS  Google Scholar 

  65. J.-H. Lee, G. Galli, J.C. Grossman, Nano Lett. 8, 3750 (2008)

    Article  ADS  Google Scholar 

  66. S.P. Hepplestone, G.P. Srivastava, Phys. Rev. B 84, 115326 (2011)

    Article  ADS  Google Scholar 

  67. C. Bera, N. Mingo, S. Volz, Phys. Rev. Lett. 104, 115502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neophytos Neophytou.

Additional information

Contribution to the Topical Issue “Silicon and Silicon-related Materials for Thermoelectricity”, edited by Dario Narducci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neophytou, N. Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation. Eur. Phys. J. B 88, 86 (2015). https://doi.org/10.1140/epjb/e2015-50673-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50673-9

Keywords

Navigation