Skip to main content
Log in

Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The system’s electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient (S) and the thermal conductivity (κ), along with the system’s thermoelectric figure of merit (ZT) are numerically estimated based on a Green’s function formalism that includes contributions up to the Hartree-Fock level. Our results account for finite on-site Coulomb interaction terms in both component quantum dots and discuss various ways leading to an enhanced thermoelectric figure of merit for the system. We demonstrate that the presence of Fano resonances in the Coulomb blockade regime is responsible for a strong violation of the Wiedemann-Franz law and a considerable enhancement of the system’s figure of merit (ZT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole, Cengage Learning, 1976)

  2. M. Cutler, N.F. Mott, Phys. Rev. 181, 1336 (1969)

    Article  ADS  Google Scholar 

  3. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  4. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  6. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  7. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  8. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  9. M. Yoshida, L.N. Oliveira, Physica B 404, 3312 (2009)

    Article  ADS  Google Scholar 

  10. J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, New York, 1998)

  11. L. Kouwenhoven, L. Glazman, Phys. World 14, 33 (2001)

    Google Scholar 

  12. S. Sasaki, H. Tamura, T. Akazaki, T. Fujisawa, Phys. Rev. Lett. 103, 266806 (2009)

    Article  ADS  Google Scholar 

  13. B.R. Bulka, P. Stefanski, Phys. Rev. Lett. 86, 5128 (2001)

    Article  ADS  Google Scholar 

  14. O. Entin-Wohlman, A. Aharony, Y. Meir, Phys. Rev. B 71, 035333 (2005)

    Article  ADS  Google Scholar 

  15. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319 (2004)

    Article  ADS  Google Scholar 

  16. P.A. Orellana, G.A. Lara, E.V. Anda, Phys. Rev. B 74, 193315 (2006)

    Article  ADS  Google Scholar 

  17. C.-H. Chung, G. Zarand, P. Wolfle, Phys. Rev. B 77, 035120 (2008)

    Article  ADS  Google Scholar 

  18. R. Zitko, Phys. Rev. B 81, 115316 (2010)

    Article  ADS  Google Scholar 

  19. M. Crisan, I. Grosu, I. Tifrea, Physica E (in press)

  20. M.L. Ladron de Guevara, F. Claro, P.A. Orellana, Phys. Rev. B 67, 195335 (2003)

    Article  ADS  Google Scholar 

  21. P. Trocha, J. Barnas, Phys. Rev. B 76, 165432 (2007)

    Article  ADS  Google Scholar 

  22. J.-S. Wang, J. Wang, J.T. Lu, Eur. Phys. J. B 62, 381 (2008) and references therein

    Article  ADS  Google Scholar 

  23. Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011) and references therein

    Article  ADS  Google Scholar 

  24. Y.S. Liu, X.F. Fang, J. Appl. Phys. 108, 023710 (2010)

    Article  ADS  Google Scholar 

  25. O. Karlstrom, H. Linke, G. Karlstrom, A. Wacker, Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  26. P. Trocha, J. Barnas, Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  27. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  28. T.-S. Kim, S. Hershfield, Phys. Rev. Lett. 88, 136601 (2002)

    Article  ADS  Google Scholar 

  29. A.C. Hewson, Phys. Rev. 144, 420 (1966)

    Article  ADS  Google Scholar 

  30. K. Brown, M. Crisan, I. Tifrea, J. Phys.: Condens. Matter 21, 215604 (2009)

    ADS  Google Scholar 

  31. I. Tifrea, G. Pal, M. Crisan, Physica E 43, 1887 (2011)

    Article  ADS  Google Scholar 

  32. J. Zheng, F. Chi, X.-D. Lu, K.-C. Zhang, Nanoscale Res. Lett. 7, 157 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Ţifrea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteros, A.L., Uppal, G.S., McMillan, S.R. et al. Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime. Eur. Phys. J. B 87, 302 (2014). https://doi.org/10.1140/epjb/e2014-50656-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50656-4

Keywords

Navigation