Skip to main content
Log in

Ab initio calculations of B2 type RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Spin polarized ab initio calculations have been carried out to study the structural, electronic, elastic and thermal properties of RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds in B2 structure. The calculations have been performed by using both generalized gradient approximation (GGA) and local spin density approximation (LSDA). The calculated value of lattice constant (a 0) for these compounds with GGA is in better agreement with the experimental data than those with LSDA. Bulk modulus (B), first-order pressure derivative of bulk modulus and magnetic moment (μ B ) are also presented. The energy band structure and electron density of states show the occupancy of 4f states for light as well as heavy rare earth atom. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G H ) and anisotropy factor (A) are calculated. The ductility or brittleness of these compounds is predicted from Pugh’s rule (B/G H ) and Cauchy pressure (C 12C 44). The Debye temperature (θ D ) is estimated from the average sound velocity, which have not been calculated and measured yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lazar, R. Podloucky, Phys. Rev. B 73, 104114 (2006)

    Article  ADS  Google Scholar 

  2. P. Gumbsch, R. Schroll, Intermetallics 7, 447 (1999)

    Article  Google Scholar 

  3. N.S. Stoloff, C.T. Liu, S.C. Deevi, Intermetallics 8, 1313 (2000)

    Article  Google Scholar 

  4. C.T. Liu, E.P. George, P.J. Maziasz, J.H. Schneibe, Mater. Sci. Eng. A 258, 84 (1998)

    Article  Google Scholar 

  5. D.B. Miracle, R. Darolia, in Intermetallic Compounds. Practice, edited by J.A. Westbrook, R.L. Fleischer (Wiley, 1994), Vol. 2, p. 53

  6. M.R. Norman, D.D. Koelling, in Handbook on the Physics and Chemistry of Rare earths, edited by K.A. Gschneidner Jr., L. Eyring, G.H. Lander, G.R. Choppinin (North- Holland, Amsterdam, 1978), Vol. 17

  7. A. Latini, V. Genova, J. Steiner, D. Gozzi J. Chem. Thermodynamics 57, 461 (2013)

    Article  Google Scholar 

  8. S.J. Lyle, W.A. Westall, J. Less-Common Metals 99, 26 (1984)

    Article  Google Scholar 

  9. G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  10. P. Fulde, J. Keller, G. Zwicknagl, in Solid State Physics, edited by H. Ehrenreich, D. Turnbull (Academic Press, New York, 1988) Vol. 41, p. 1

  11. Valence Fluctuations in Solids, edited by L.M. Falicov, W. Hanke, M.B. Mable (North-Holland Publ. Co., Amsterdam, 1981)

  12. G. Aeppli, Z. Fisk, Comments Cond. Mat. Phys. 16, 155 (1992)

    Google Scholar 

  13. J.W. Allen, R.M. Martin, Phys. Rev. Lett. 49, 1106 (1982)

    Article  ADS  Google Scholar 

  14. P. Solokha, I. Curlik, M. Giovannini, N.R. Lee-Hone, M. Reiffers, D.H. Ryan, A. Saccone, J. Solid State Chem. 184, 2498 (2011)

    Article  ADS  Google Scholar 

  15. A. Indelli, A. Palenzona, J. Less-Common Met. 9, 1 (1965)

    Article  Google Scholar 

  16. Y.-B. Kang, L. Jin, P. Chartrand, A.E. Gheribi, K. Bai, P. Wu, Calphad 38, 100 (2012)

    Article  Google Scholar 

  17. G. Pagare, H. Devi, S.S. Chouhan, S.P. Sanyal, Comput. Mater. Sci. 92, 178 (2014)

    Article  Google Scholar 

  18. A. Sekkal, A. Benzair, T. Ouahrani, H.I. Faraoun, G. Merad, H. Aourag, C. Esling, Intermetallics 45, 65 (2014)

    Article  Google Scholar 

  19. Shi Yao-jun, Du Yu-lei, Chen Guang, Trans. Nonferrous Met. Soc. China 22, 654 (2012)

    Article  Google Scholar 

  20. Y. Kasamatsu, T. Tohyama, K. Kojima, T. Hihara, J. Magn. Magn. Mater. 70, 294 (1987)

    Article  ADS  Google Scholar 

  21. J. Szade, M. Neumann, J. Phys.: Condens. Matter 11, 3887 (1999)

    ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. D.J. Singh, L. Nordstrom, Planewaves Pseudopotentials, and the LAPW Method (Springer, New York, 2006)

  26. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (K. Schwarz Technical Universitat, Wien, 2001)

  27. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Birch, J. Appl. Phys. 9, 279 (1938)

    Article  ADS  MATH  Google Scholar 

  29. S. Kurth, J.P. Perdew, P. Blaha, Int. J. Quantum Chem. 75, 889 (1999)

    Article  Google Scholar 

  30. D.C. Wallace, in Thermodynamics of Crystals (Wiley, New York, 1972), Chap. 1

  31. O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov, Phys. Rev. B 63, 134112 (2001)

    Article  ADS  Google Scholar 

  32. R. Hill, Proc. Phys. Soc. London A 65, 349 (1952)

    Article  ADS  Google Scholar 

  33. W. Voigt, Ann. Phys. 38, 573 (1889)

    Article  MathSciNet  Google Scholar 

  34. A. Reuss, Z. Angew. Math. Phys. 9, 49 (1929)

    Article  MATH  Google Scholar 

  35. V. Tvergaard, J.W. Hutchinson, J. Am. Chem. Soc. 71, 157 (1998)

    Google Scholar 

  36. Z.-J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  37. F. Peng, D. Chen, H. Fu, X. Cheng, Phys. Stat. Sol. B 246, 71 (2009)

    Article  ADS  Google Scholar 

  38. C.H. Jenkins, S.K. Khanna, inMechanics of Materials, A modern integration of mechanics and materials in structural design, (Elsevier, 2005) pp. 62–72

  39. A. Sumer, J.F. Smith, J. Appl. Phys. 33, 2283 (1962)

    Article  ADS  Google Scholar 

  40. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  41. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  42. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, edited by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180

  43. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  44. J.R. Christman, Fundamentals of Solid State Physics (Wiley, New York, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitanjali Pagare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, H., Pagare, G., Jain, E. et al. Ab initio calculations of B2 type RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds. Eur. Phys. J. B 87, 268 (2014). https://doi.org/10.1140/epjb/e2014-50521-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50521-6

Keywords

Navigation