Skip to main content
Log in

Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Phase equilibrium lines of hexagonal graphite (hg) and cubic diamond (cd) phases of carbon as well as a saddle-point equilibrium line between the two phase equilibrium lines are studied by first-principles total-energy calculations. The Gibbs free energies (G) of the three equilibrium lines determine the transition pressure p t = 70 kbar (0.070 Mbar) from hg phase to cd phase and the barrier height at p t of ΔG = 178 mRy/atom that stabilizes the two phases against a phase transition. The cd phase becomes unstable at V = 13.6 au3/atom (p = 26 Mbar) where the curvature at the equilibrium point of the energy curve (denoted E V (c/a) curve) goes to zero. The hg and cd phase equilibrium lines cross at V = 14.5 au3/atom where the regular hg phase (with one minimum in each E V (c/a) curve) ends and the irregular hg phase (with two minima in each E V (c/a) curve) develops. The feature of “two phase equilibrium lines cross” was not observed in our previous work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012); S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)] where the two interacting crystal phases have a common unit cell with different c/a ratios. This work demonstrates that the saddle-point equilibrium line along with the two phase equilibrium lines are all needed for a complete description of crystal phases and their transitions under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)

    ADS  Google Scholar 

  2. S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)

    Article  ADS  Google Scholar 

  3. P.S. DeCarli, J.C. Jameson, Science 133, 1821 (1961)

    Article  ADS  Google Scholar 

  4. F.P. Bundy, J. Chem. Phys. 38, 631 (1963)

    Article  ADS  Google Scholar 

  5. S. Fahy, S.G. Louie, M.L. Cohen, Phys. Rev. B 34, 1191 (1986)

    Article  ADS  Google Scholar 

  6. S. Scandolo, M. Bernasconi, G.L. Chiarotti, P. Focher, E. Tosatti, Phys. Rev. Lett. 74, 4015 (1995)

    Article  ADS  Google Scholar 

  7. F. Bundy, W. Bassett, M. Weathers, R. Hemley, H. Mao, A. Gocharov, Carbon 34, 141 (1996)

    Article  Google Scholar 

  8. J.B. Wang, G.W. Yang, J. Phys.: Condens. Matter 11, 7089 (1999)

    ADS  Google Scholar 

  9. L. Sun, Q. Wu, Y. Zhang, W. Wang, J. Mater. Res. 14, 631 (1999)

    Article  ADS  Google Scholar 

  10. V.F. Britun, A.V. Kurdyumov, I.A. Petrusha, Powder Metall. Met. Ceram. 43, 87 (2004)

    Article  Google Scholar 

  11. V.A. Davydov, A.V. Rakhmanina, S. Rols, V. Agafonov, M.X. Pulikkathara, R.L. Vander Wal, V.N. Khabashesku, J. Phys. Chem. C 111, 12873 (2007)

    Article  Google Scholar 

  12. J.T. Wang, C. Chen, D.S. Wang, H. Mizuseki, Y. Kawazoe, J. Appl. Phys. 107, 063507 (2010)

    Article  ADS  Google Scholar 

  13. R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, M. Parrinello, Nat. Mater. 10, 693 (2011)

    Article  ADS  Google Scholar 

  14. P. Xiao, G. Henkelman, J. Chem. Phys. 137, 101101 (2012)

    Article  ADS  Google Scholar 

  15. S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 21, 435403 (2009)

    ADS  Google Scholar 

  16. P.M. Marcus, S.L. Qiu, J. Phys.: Condens. Matter 21, 125404 (2009)

    ADS  Google Scholar 

  17. P.M. Marcus, S.L. Qiu, J. Phys.: Condens. Matter 21, 115401 (2009)

    ADS  Google Scholar 

  18. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001), ISBN 3-9501031-1-2

  19. P. Blaha, K. Schwarz, P. Sorantin, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  20. http://en.wikipedia.org/wiki/Compact_stencil http://en.wikipedia.org/wiki/Numerical_differentiation

  21. M. Birowska, K. Milowska, J.A. Majewski, Acta Physica Polonica A 120, 845 (2011)

    Google Scholar 

  22. M.T. Yin, M.L. Cohen, Phys. Rev. B 29, 6996 (1984)

    Article  ADS  Google Scholar 

  23. J. Furthmuller, J. Hafner, G. Kresse, Phys. Rev. B 50, 15606 (1994)

    Article  ADS  Google Scholar 

  24. Y.C. Wang, K. Scheerschmidt, U. Gosele, Phys. Rev. B 61, 12864 (2000)

    Article  ADS  Google Scholar 

  25. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. O.L. Anderson, J. Phys. Chem. Solids 27, 547 (1966)

    Article  ADS  Google Scholar 

  27. J. Donohue, The Structure of the Elements (Krieger, Malabar, FL, 1982)

  28. K. Gschneidner, Solid State Phys. 16, 275 (1964)

    Google Scholar 

  29. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996)

  30. C. Frondel, U.B. Marvin, Nature 214, 587 (1967)

    Article  ADS  Google Scholar 

  31. Metals Handbook, 8th edn. (American Society for Metals, 1973), Vol. 8, p. 235

  32. H.J. McSkimin Jr., P. Andreatch, J. Appl. Phys. 43, 985 (1972)

    Article  ADS  Google Scholar 

  33. S. Fahy, S.G. Louie, Phys. Rev. B 36, 3373 (1987)

    Article  ADS  Google Scholar 

  34. A. Janoti, S.H. Wei, D.J. Singh, Phys. Rev. B 64, 174107 (2001)

    Article  ADS  Google Scholar 

  35. A.S. Barnard, S.P. Russo, I.K. Snook, Philos. Mag. B 82, 1767 (2002)

    Article  ADS  Google Scholar 

  36. M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, T. Adschiri, Phys. Rev. Lett. 102, 055703 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Li Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S.L. Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations. Eur. Phys. J. B 87, 147 (2014). https://doi.org/10.1140/epjb/e2014-50260-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50260-8

Keywords

Navigation