Skip to main content
Log in

Nuclear spin diffusion effects in optically pumped quantum wells

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We studied the influence of the nuclear spin diffusion on the dynamical nuclear polarization of low dimensional nanostructures subject to optical pumping. Our analysis shows that the induced nuclear spin polarization in semiconductor nanostructures will develop both a time and position dependence due to a nonuniform hyperfine interaction as a result of the geometrical confinement provided by the system. In particular, for the case of semiconductor quantum wells, nuclear spin diffusion is responsible for a nonzero nuclear spin polarization in the quantum well barriers. As an example we considered a 57 Å GaAs square quantum well and a 1000 Å Al x Ga1−x As parabolic quantum well both within 500 Å Al0.4Ga0.6As barriers. We found that the average nuclear spin polarization in the quantum well barriers depends on the strength of the geometrical confinement provided by the structure and is characterized by a saturation time of the order of few hundred seconds. Depending on the value of the nuclear spin diffusion constant, the average nuclear spin polarization in the quantum well barriers can get as high as 70% for the square quantum well and 40% for the parabolic quantum well. These results should be relevant for both time resolved Faraday rotation and optical nuclear magnetic resonance experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treg, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Semiconductor Spintronics and Quantum Computation, edited by D.D. Awschalom, D. Loss, N. Samarth (Springer, New York, 2002)

  3. J.M. Taylor, C.M. Marcus, M.D. Lukin, Phys. Rev. Lett. 90, 206803 (2003)

    Article  ADS  Google Scholar 

  4. N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  6. C. Ciuti, J.P. McGuire, L.M. Sham, Appl. Phys. Lett. 81, 4781 (2002)

    Article  ADS  Google Scholar 

  7. Y. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Appl. Phys. Lett. 86, 162107 (2005)

    Article  ADS  Google Scholar 

  8. J.J. Baumberg, D.D. Awschalom, N. Samarth, H. Luo, J.K. Furdyna, Phys. Rev. Lett. 72, 717 (1994)

    Article  ADS  Google Scholar 

  9. J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)

    Article  ADS  Google Scholar 

  10. S.E. Barrett, R. Tycko, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 72, 1368 (1994)

    Article  ADS  Google Scholar 

  11. R. Tycko, S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, Science 268, 1460 (1995)

    Article  ADS  Google Scholar 

  12. J.M. Kikkawa, D.D. Awschalom, Science 287, 473 (2000)

    Article  ADS  Google Scholar 

  13. A. Malinowski, R.T. Harley, Solid State Commun. 114, 419 (2000)

    Article  ADS  Google Scholar 

  14. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  MATH  Google Scholar 

  15. A. Ekimov, V. Safarov, Pis’ma Zh. Exsp. Teor. Fiz. 15, 257 (1972) [J. Exp. Theor. Phys. Lett. 15, 179 (1972)]

    Google Scholar 

  16. D. Paget, G. Lampel, B. Sapoval, V.I. Safarov, Phys. Rev. B 15, 5780 (1977)

    Article  ADS  Google Scholar 

  17. K.L. Sauer, C.A. Klug, J.B. Miller, J.P. Yesinowski, Phys. Rev. B 84, 085202 (2011)

    Article  ADS  Google Scholar 

  18. J.P. King, Y. Li, C.A. Meriles, J.A. Reimer, Nat. Commun. 3, 918 (2012)

    Article  ADS  Google Scholar 

  19. E.A. Chekhovich, M.N. Makhonin, A.I. Tartakovskii, A. Yacoby, H. Bluhm, K.C. Nowack, L.M.K. Vandersypen, Nat. Mater 12, 494 (2013)

    Article  ADS  Google Scholar 

  20. Optical Orientation, edited by F. Meier, B.P. Zakharchenya (Elsevier, Amsterdam, 1984)

  21. S.E. Hayes, S. Mui, K. Ramaswamy, J. Chem. Phys. 128, 052203 (2008)

    Article  ADS  Google Scholar 

  22. X. Lou, C. Adelmann, M. Furis, S.A. Crooker, C.J. Palmstrom, P.A. Crowell, Phys. Rev. Lett. 96, 176603 (2006)

    Article  ADS  Google Scholar 

  23. X. Lou, C. Adelmann, S.A. Crooker, E.S. Garlid, J. Zhang, K.S.M. Reddy, S.D. Flexner, C.J. Palmstrom, P.A. Crowell, Nat. Phys. 3, 197 (2007)

    Article  Google Scholar 

  24. M.K. Chan, Q.O. Hu, J. Zhang, T. Kondo, C.J. Palmstrom, P.A. Crowell, Phys. Rev. B 80, 161206(R) (2009)

    Article  ADS  Google Scholar 

  25. A.W. Overhauser, Phys. Rev. 89, 689 (1953)

    Article  ADS  MATH  Google Scholar 

  26. J.A. McNeil, W.G. Clark, Phys. Rev. B 13, 4705 (1976)

    Article  ADS  Google Scholar 

  27. C.P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, New York, 2002)

  28. D. Paget, Phys. Rev. B 25, 4444 (1982)

    Article  ADS  Google Scholar 

  29. M. Poggio, G.M. Steeves, R.C. Myers, Y. Kato, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 91, 207602 (2003)

    Article  ADS  Google Scholar 

  30. C. Deng, X. Hu, Phys. Rev. B 72, 165333 (2005)

    Article  ADS  Google Scholar 

  31. A.E. Nikolaenko, E.A. Chekhovich, M.N. Makhonin, I.W. Drouzas, A.B. Van’kov, J. Skiba-Szymanska, M.S. Skolnick, P. Senellart, D. Martrou, A. Lemaitre, A.I. Tartakovskii, Phys. Rev. B 79, 081303(R) (2009)

    Article  ADS  Google Scholar 

  32. C. Latta, A. Srivastava, A. imamoglu, Phys. Rev. Lett. 107, 167401 (2011)

    Article  ADS  Google Scholar 

  33. J.H. Davies, The Physics of Low Dimensional Semiconductors: An Introduction (Cambridge University Press, New York, 1997)

  34. A.S. Bracker, E.A. Stinaff, D. Gammon, M.E. Ware, J.G. Tischler, A. Shabaev, Al.L. Efros, D. Park, D. Gershoni, V.L. Korenev, I.A. Merkulov, Phys. Rev. Lett. 94, 047402 (2005)

    Article  ADS  Google Scholar 

  35. I. Ţifrea, M.E. Flatté, Phys. Rev. B 84, 155319 (2011)

    Article  ADS  Google Scholar 

  36. I. Ţifrea, M.E. Flatté, Phys. Rev. B 69, 115305 (2004)

    Article  ADS  Google Scholar 

  37. I. Ţifrea, M.E. Flatté, Phys. Rev. Lett. 90, 237601 (2003)

    Article  ADS  Google Scholar 

  38. P.L. Kuhns, A. Kleinhammes, T. Schmiedel, W.G. Moulton, P. Chabrier, S. Sloan, E. Hughes, C.R. Bowers, Phys. Rev. B 55, 7824 (1997)

    Article  ADS  Google Scholar 

  39. K. Ramaswamy, S. Mui, S.E. Hayes, Phys. Rev. B 74, 153201 (2006)

    Article  ADS  Google Scholar 

  40. W.E. Blumberg, Phys. Rev. 119, 79 (1960)

    Article  ADS  Google Scholar 

  41. M.N. Makhonin, A.I. Tartakovskii, A.B. Van’kov, I. Drouzas, T. Wright, J. Skiba-Szymanska, A. Russel, V.I. Fal’ko, M.S. Skolnick, H.-Y. Liu, M. Hopkinson, Phys. Rev. B 77, 125307 (2008)

    Article  ADS  Google Scholar 

  42. B. Urbaszek, P.-F. Braun, T. Amand, O. Krebs, T. Belhadj, L. Lemaitre, P. Voisin, X. Marie, Phys. Rev. B 76, 201301(R) (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Ţifrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, D., Kim, T. & Ţifrea, I. Nuclear spin diffusion effects in optically pumped quantum wells. Eur. Phys. J. B 87, 17 (2014). https://doi.org/10.1140/epjb/e2013-40967-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40967-3

Keywords

Navigation