Skip to main content
Log in

Magnetic properties in Pd doped ZnS from ab initio calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First-principles calculations based on density functional theory within the general gradient approximation (GGA) are performed to study the electronic structure and magnetic properties of Pd doped ZnS. It is found that an isolated Pd atom doped 2 × 2 × 2 ZnS supercell shows half-metallic ferromagnetic character with a total magnetic moment of 2.0μ B per supercell, which is significantly enhanced compared with the pure ZnS supercell. The strong ferromagnetic coupling of the local magnetic moments can be explained in terms of strong hybridisation between Pd-4d and S-3p states. The hybridisation between Pd and the neighbouring S atoms leads to a strong coupling chain Pd(4d)-S(3p)-Zn(3d)-S(3p)-Pd(4d), which induces strong indirect long range FM coupling between Pd dopants. The results of several doping configurations demonstrate that ferromagnetic coupling exists between the two doped palladium atoms. These results suggest that Pd doped ZnS can also be considered as suitable candidates for exploring new half-metallic ferromagnetism in semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. vonMolnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Z. Wang, J. Tang, Y. Chen, L. Spinu, W. Zhou, L.D. Tung, J. Appl. Phys. 95, 7384 (2004)

    Article  ADS  Google Scholar 

  3. N.H. Hong, J. Sakai, W. Prellier, Phys. Rev. B 70, 195204 (2004)

    Article  ADS  Google Scholar 

  4. N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, Appl. Phys. Lett. 87, 102505 (2005)

    Article  ADS  Google Scholar 

  5. N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, J. Magn. Magn. Mater. 302, 228 (2006)

    Article  ADS  Google Scholar 

  6. A. Gupta, H. Cao, K. Parekh, K.V. Rao, A.R. Raju, U.V. Waghmare, J. Appl. Phys. 101, 09N513 (2007)

    Google Scholar 

  7. R.A. Stern, T.M. Schuler, J.M. MacLaren, D.L. Ederer, V. Perez-Dieste, F.J. Himpsel, J. Appl. Phys. 95, 7468 (2004)

    Article  ADS  Google Scholar 

  8. X. Jia, M. Qin, W. Yang, J. Phys. D 42, 235001 (2009)

    Article  ADS  Google Scholar 

  9. G. Yao, G. Fan, H. Xing, S. Zheng, J. Ma, S. Li, Y. Zhang, M. He, Chem. Phys. Lett. 529, 35 (2012)

    Article  ADS  Google Scholar 

  10. J.H. Shim, T. Hwang, S. Lee, J.H. Park, S. Han, Y.H. Jeong, Appl. Phys. Lett. 86, 082503 (2005)

    Article  ADS  Google Scholar 

  11. T.C. Kaspar, T. Droubay, S.M. Heald, M.H. Engelhard, P. Nachimuthu, S.A. Chambers, Phys. Rev. B 77, 201303 (2008)

    Article  ADS  Google Scholar 

  12. H.X. Liu, S.Y. Wu, R.K. Singh, L. Gu, D.J. Smith, N. Newman, N.R. Dilley, L. Montes, M.B. Simmonds, Appl. Phys. Lett. 85, 4076 (2004)

    Article  ADS  Google Scholar 

  13. H. Saito, V. Zayets, S. Yamagata, K. Ando, Phys. Rev. Lett. 90, 207202 (2003)

    Article  ADS  Google Scholar 

  14. D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A 105, 119 (2011)

    Article  ADS  Google Scholar 

  15. P. Vinotha Boorana Lakshmi, K. Sakthi Raj, K. Ramachandran, Cryst. Res. Technol. 44, 153 (2009)

    Article  Google Scholar 

  16. M.M. Rashad, D.A. Rayan, K. El-Barawy, J. Phys: Conf. Ser. 200, 072077 (2010)

    ADS  Google Scholar 

  17. W.S. Ni, Y.J. Lin, C.J. Liu, Y.W. Yang, L. Horng, J. Alloys Compd. 556, 178 (2013)

    Article  Google Scholar 

  18. Y. Li, C. Cao, Z. Chen, Mater. Lett. 65, 2432 (2011)

    Article  MathSciNet  Google Scholar 

  19. Y. Li, C. Cao, Z. Chen, Chem. Phys. Lett. 517, 55 (2011)

    Article  ADS  Google Scholar 

  20. S. Sambasivam, D. Paul Joseph, J.G. Lin, C. Venkateswaran, J. Solid State Chem. 182, 2598 (2009)

    Article  ADS  Google Scholar 

  21. M.Y. Lu, L.J. Chen, W. Mai, Z.L. Wang, Appl. Phys. Lett. 93, 242503 (2008)

    Article  ADS  Google Scholar 

  22. S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, L. Kumar, J. Magn. Magn. Mater. 323, 2734 (2011)

    Article  ADS  Google Scholar 

  23. D. Amaranatha Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Appl. Surf. Sci. 258, 5206 (2012)

    Article  ADS  Google Scholar 

  24. R.D. McNorton, T.M. Schuler, J.M. MacLaren, R.A. Stern, Phys. Rev. B 78, 075209 (2008)

    Article  ADS  Google Scholar 

  25. C. Zhang, S. Yan, J. Appl. Phys. 107, 043913 (2010)

    Article  ADS  Google Scholar 

  26. H. Yan, Y. Li, Y. Guo, Q. Song, Y. Chen, Physica B 406, 545 (2011)

    Article  ADS  Google Scholar 

  27. R. Long, N.J. English, Phys. Rev. B 80, 115212 (2009)

    Article  ADS  Google Scholar 

  28. K. Osuch, E.B. Lombardi, L. Adamowicz, Phys. Rev. B 71, 165213 (2005)

    Article  ADS  Google Scholar 

  29. M. Ren, X. Feng, P. Li, X. Liu, Z. Zhang, Solid State Commun. 151, 864 (2011)

    Article  ADS  Google Scholar 

  30. R. González-Hernández, W. López-Pérez, M. Jairo Arbey Rodríguez, Phys. Stat. Sol. B 249, 198 (2012)

    Article  ADS  Google Scholar 

  31. M. Ren, C. Zhang, P. Li, Z. Song, X. Liu, J. Magn. Magn. Mater. 324, 2039 (2012)

    Article  ADS  Google Scholar 

  32. A.F. Lamrani, M. Belaiche, A. Benyoussef, A.E. Kenz, E.H. Saidi, J. Supercond. Nov. Magn. 25, 503 (2012)

    Article  Google Scholar 

  33. Z.Y. Tan, L.L. Wang, Y.C. Yang, W.Z. Xiao, Eur. Phys. J. B 85, 138 (2012)

    Article  ADS  Google Scholar 

  34. W.Z. Xiao H. Luo, J.Y. Yang, D. Shuang, Eur. Phys. J. B 80, 337 (2011)

    Article  ADS  Google Scholar 

  35. K.C. Zhang, Y.F. Li, Y. Liu, Y. Zhu, J. Appl. Phys. 112, 043705 (2012)

    Article  ADS  Google Scholar 

  36. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  37. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  38. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  39. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  41. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  43. R.W. Godby, M. Schlüter, L.J. Scham, Phys. Rev. B 37, 10159 (1988)

    Article  ADS  Google Scholar 

  44. A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)

    Article  ADS  Google Scholar 

  45. H. Akai, Phys. Rev. Lett. 81, 3002 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, X., Li, Q. & Xu, M. Magnetic properties in Pd doped ZnS from ab initio calculations. Eur. Phys. J. B 86, 465 (2013). https://doi.org/10.1140/epjb/e2013-40752-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40752-4

Keywords

Navigation