Skip to main content
Log in

Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the effect of a transverse field on a cylindrical core/shell spin-1 Ising nanowire, within the effective-field theory based on a probability distribution technique, in order to clarify how the relevant thermodynamic quantities such a magnetizations, hysteresis loops, compensation behaviors, are influenced by a transverse field. From these studies, following interesting phenomena are found. (i) Beside a singly hysteresis loop, double, triple or even quadruple hysteresis loops occurs in the system. (ii) The P and N types of compensation behavior are obtained in addition to the Q-, R- and S-types. We also compare our results with some experimental and theoretical results and find in a qualitatively good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Skumryev, S. Stoyanov, Y. Zhang, G.C. Hadjipanayis, D. Givord, J. Nogués, Nature, 423, 850 (2003)

    Article  ADS  Google Scholar 

  2. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  3. Z. Liu, D. Zhang, S. Han, C. Li, B. Lei, W. Lu, J. Fang, C. Zhou, J. Am. Chem. Soc. 127, 6 (2005)

    Article  Google Scholar 

  4. R. Skomski, J. Phys.: Condens. Matter 15, 841 (2003)

    ADS  Google Scholar 

  5. S.I. Denisov, T.V. Lyutyy, P. Hänggi, K.N. Trohidou, Phys. Rev. B 74, 104406 (2006)

    Article  ADS  Google Scholar 

  6. S.I. Denisov, T.V. Lyutyy, P. Hänggi, Phys. Rev. Lett. 97, 227202 (2006)

    Article  ADS  Google Scholar 

  7. I. Sameera, V. Prasad, Solid State Commun. 150, 1182 (2010)

    Article  ADS  Google Scholar 

  8. N. Sköld, L.S. Karlsson, M.W. Larsson, M.-E. Pistol, W. Seifert, J. Trägårdh, L. Samuelson, Nano Lett. 5, 1943 (2005)

    Article  ADS  Google Scholar 

  9. J. Nogués, J. Sort, V. Langlais, S. Doppiu, B. Dieny, J.S. Munoz, S. Surinach, M.D. Baro, S. Stoyanov, Y. Zhang, Int. J. Nanotechnol. 2, 23 (2005)

    Google Scholar 

  10. C. Frandsen, C.W. Ostenfeld, M. Xu, C.S. Jacobsen, L. Keller, K. Lefmann, S. Morup, Phys. Rev. B 70, 134416 (2004)

    Article  ADS  Google Scholar 

  11. X. Zou, G. Xiao, Phys. Rev. B 77, 054417 (2008)

    Article  ADS  Google Scholar 

  12. H. Kachkachi, J. Magn. Magn. Mater. 316, 248 (2007)

    Article  ADS  Google Scholar 

  13. F.E. Kruis, H. Fissan, A. Peled, J. Aerosol. Sci. 29, 511 (1998)

    Article  Google Scholar 

  14. J. Walter, H. Shioyama, Phys. Lett. A 254, 65 (1999)

    Article  ADS  Google Scholar 

  15. J. Bernholc, C. Roland, B.I. Yakobson, Curr. Opin. Solid State Mater. Sci. 2, 706 (1997)

    Article  ADS  Google Scholar 

  16. M. Sebaa, T.Y. Nguyen, R.K. Paul, A. Mulchandani, H. Liu, Mater. Lett. 92, 122 (2013)

    Article  Google Scholar 

  17. B. Hu, W. Chen, J. Zhou, Sens. Actuators B 176, 522 (2013)

    Article  Google Scholar 

  18. G. Liu, N. Hoivik, K. Wang, H. Jakobsen, Solar Energy Mater. Solar Cells 105, 53 (2012)

    Article  Google Scholar 

  19. J. Nayak, S.N. Sahu, Appl. Surf. Sci. 182, 407 (2001)

    Article  ADS  Google Scholar 

  20. R. Marangoni, P. Serp, R. Feurer, Y. Kihn, P. Kalck, C. Vahlas, Carbon 39, 443 (2001)

    Article  Google Scholar 

  21. A.E. Berkowitz, R.H. Kodama, S.A. Makhlouf, F.T. Parker, F.E. Spada, E.J. McNiff Jr., S. Foner, J. Magn. Magn. Mater. 196, 591 (1999)

    Article  ADS  Google Scholar 

  22. G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Appl. Phys. Lett. 82, 3053 (2003)

    Article  ADS  Google Scholar 

  23. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395 (2002)

    Article  ADS  Google Scholar 

  24. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  25. D.W. Elliott, W.-X. Zhang, Environ. Sci. Technol. 35, 4922 (2001)

    Article  ADS  Google Scholar 

  26. A.P.Y. Wong, M.H.W. Chan, Phys. Rev. Lett. 65, 2567 (1990)

    Article  ADS  Google Scholar 

  27. C. Alexiou, A. Schmidt, R. Klein, P. Hullin, C. Bergemann, W. Arnold, J. Magn. Magn. Mater. 252, 363 (2002)

    Article  ADS  Google Scholar 

  28. J.E. Wegrowe, D. Kelly, Y. Jaccard, Ph. Guittienne, J.Ph. Ansermet, Eur. Phys. Lett. 45, 626 (1999)

    Article  ADS  Google Scholar 

  29. A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999)

    Article  ADS  Google Scholar 

  30. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

    Article  ADS  Google Scholar 

  31. S.J. Son, J. Reichet, B. He, M. Schuchman, S.B. Lee, J. Am. Chem. Soc. 127, 7316 (2005)

    Article  Google Scholar 

  32. D. Lee, R.E. Cohen, M.F. Rubner, Langmuir 23, 123 (2007)

    Article  Google Scholar 

  33. A. Hultgren, M. Tanase, C.S. Chen, D.H. Reich, IEEE Trans. Magn. 40, 2988 (2004)

    Article  ADS  Google Scholar 

  34. A. Hultgren, M. Tanase, E.J. Felton, K. Bhadriraju, A.K. Salem, C.S. Chen, D.H. Reich, Biotechnol. Prog. 21, 509 (2005)

    Article  Google Scholar 

  35. N.A. Usov, S.A. Gudoshnikov, J. Magn. Magn. Mater. 290, 727 (2005)

    Article  ADS  Google Scholar 

  36. D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, N.X. Phuc, J. Alloys Compd. 509, 1373 (2011)

    Article  Google Scholar 

  37. T. Kaneyoshi, J. Magn. Magn. Mater. 321, 3430 (2009)

    Article  ADS  Google Scholar 

  38. T. Kaneyoshi, Solid State Commun. 151, 1528 (2011)

    Article  ADS  Google Scholar 

  39. T. Kaneyoshi, Solid State Commun. 152, 883 (2012)

    Article  ADS  Google Scholar 

  40. T. Kaneyoshi, Physica A 391, 3616 (2012)

    Article  ADS  Google Scholar 

  41. T. Kaneyoshi, Phys. Lett. A 376, 2352 (2012)

    Article  ADS  Google Scholar 

  42. A. Zaim, M. Kerouad, M. Boughrara, A. Ainane, J.J. de Miguel, J. Supercond. Novel Magn. 25, 2407 (2012)

    Article  Google Scholar 

  43. W. Jiang, L.M. Liu, X.X. Li, Q. Deng, H.Y. Guan, F. Zhang, A.B. Guo, Physica B 407, 3933 (2012)

    Article  ADS  Google Scholar 

  44. Ü. Akıncı, J. Magn. Magn. Mater. 324, 3951 (2012)

    Article  ADS  Google Scholar 

  45. Ü. Akıncı, J. Magn. Magn. Mater. 324, 4237 (2012)

    Article  ADS  Google Scholar 

  46. M. Keskin, N. Şarlı, B. Deviren, Solid State Commun. 151, 1025 (2011)

    Article  ADS  Google Scholar 

  47. Ò. Iglesias, X. Battle, A. Labarta, J. Nanosci. Nanotechnol. 8, 2761 (2008)

    Google Scholar 

  48. Y. Hu, A. Du, J. Appl. Phys. 102, 113911 (2007)

    Article  ADS  Google Scholar 

  49. A. Zaim, M. Kerouad, Y. El Amraoui, J. Magn. Magn. Mater. 321, 1077 (2009)

    Article  ADS  Google Scholar 

  50. A. Zaim, M. Kerouad, Physica A 389, 3435 (2010)

    Article  ADS  Google Scholar 

  51. Th. Michael, S. Trimperand, J.M. Wesselinowa, Phys. Rev. B 74, 214113 (2006)

    Article  ADS  Google Scholar 

  52. Th. Michael, S. Trimperand, J.M. Wesselinowa, Phys. Rev. B 76, 094107 (2007)

    Article  ADS  Google Scholar 

  53. H. Wang, Y. Zhou, E. Wang, D.L. Lin, Chin. J. Phys. 39, 85 (2001)

    Google Scholar 

  54. H. Wang, Y. Zhou, D.L. Lin, C. Wang, Phys. Stat. Sol. B 232, 254 (2002)

    Article  ADS  Google Scholar 

  55. Ü. Akıncı, Y. Yüksel, E. Vatansever, H. Polat, Physica A 391, 5810 (2012)

    Article  ADS  Google Scholar 

  56. B. Deviren, M. Ertaş, M. Keskin, Phys. Scr. 85, 055001 (2012)

    Article  ADS  Google Scholar 

  57. B. Deviren, E. Kantar, M. Keskin, J. Magn. Magn. Mater. 324, 2163 (2012)

    Article  ADS  Google Scholar 

  58. B. Deviren, M. Keskin, Phys. Lett. A 376, 1011 (2012)

    Article  ADS  MATH  Google Scholar 

  59. N. Şarlı, M. Keskin, Solid State Commun. 152, 354 (2012)

    Article  ADS  Google Scholar 

  60. O. Canko, A. Erdinç, F. Taşkın, M. Atış, Phys. Lett. A 375, 3547 (2011)

    Article  ADS  MATH  Google Scholar 

  61. O. Canko, A. Erdinç, F. Taşkın, A.F. Yıldırım, J. Magn. Magn. Mater. 324, 508 (2012)

    Article  ADS  Google Scholar 

  62. N. Şarlı, Physica B 411, 12 (2013)

    Article  ADS  Google Scholar 

  63. L.M. Liu, W. Jiang, Z. Wang, H.Y. Guan, A.B. Guo, J. Magn. Magn. Mater. 324, 4034 (2012)

    Article  ADS  Google Scholar 

  64. W. Jiang, X.-X. Li, L.-M. Liu, Physica E 53, 29 (2013)

    Article  ADS  Google Scholar 

  65. W. Jiang, F. Zhang, X.X. Li, H.Y. Guan, A.B. Guo, Z. Wang, Physica E 47, 95 (2013)

    Article  ADS  Google Scholar 

  66. W. Jiang, H.Y. Guan, Z. Wang, A.B. Guo, Physica B 407, 378 (2012)

    Article  ADS  Google Scholar 

  67. A. Zaim, M. Kerouad, M. Boughrara, Solid State Commun. 158, 76 (2012)

    Article  ADS  Google Scholar 

  68. Y. Yüksel, E. Aydiner, H. Polat, J. Magn. Magn. Mater. 323, 3168 (2011)

    Article  ADS  Google Scholar 

  69. W. Jiang, L.-M. Liu, X.-X. Li, Q. Deng, H.-Y. Guan, F. Zhang, A.-B. Guo, Physica B 407, 3933 (2012)

    Article  ADS  Google Scholar 

  70. H.P.D. Shieh, M.H. Kryder, Appl. Phys. Lett. 49, 473 (1986)

    Article  ADS  Google Scholar 

  71. T. Kaneyoshi, Phys. Stat. Sol. B 248, 250 (2011)

    Article  ADS  Google Scholar 

  72. T. Kaneyoshi, J. Magn. Magn. Mater. 322, 3410 (2010)

    Article  ADS  Google Scholar 

  73. T. Kaneyoshi, J. Magn. Magn. Mater. 322, 3014 (2010)

    Article  ADS  Google Scholar 

  74. M. Saber, Chin. J. Phys. 35, 577 (1997)

    Google Scholar 

  75. X.F. Jiang, J.L. Li, J. Zhong, C.Z. Yang, Phys. Rev. B 47, 827 (1993)

    Article  ADS  Google Scholar 

  76. T. Kaneyoshi, Phys. Stat. Sol. B 242, 2938 (2005)

    Article  ADS  Google Scholar 

  77. T. Kaneyoshi, Physica A 390, 3697 (2011)

    Article  ADS  Google Scholar 

  78. T. Kaneyoshi, Solid State Commun. 151, 1528 (2011)

    Article  ADS  Google Scholar 

  79. T. Kaneyoshi, J. Magn. Magn. Mater. 323, 1145 (2011)

    Article  ADS  Google Scholar 

  80. A. Zaim, M. Kerouad, M. Boughrara, J. Magn. Magn. Mater. 331, 37 (2013)

    Article  ADS  Google Scholar 

  81. P. Shukla, R.S. Kharwanlang, Phys. Rev. B 83, 011121 (2011)

    Article  ADS  Google Scholar 

  82. C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F. Le Normand, A. Derory, Appl. Surf. Sci. 255, 5386 (2009)

    Article  ADS  Google Scholar 

  83. H.W. Wu, C.J. Tsai, L.J. Chen, Appl. Phys. Lett. 90, 043121 (2007)

    Article  ADS  Google Scholar 

  84. J. Curiale, R.D. Sanchez, H.E. Troiani, A.G. Leyva, P. Levy, Appl. Phys. Lett. 87, 043113 (2005)

    Article  ADS  Google Scholar 

  85. J.A. Garcia, E. Bertran, L. Elbaile, J. Garcia-Cespedes, A. Svalov, Phys. Stat. Sol. C 7, 2679 (2010)

    Article  Google Scholar 

  86. J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten, G. Güntherodt, Appl. Phys. Lett. 84, 3696 (2004)

    Article  ADS  Google Scholar 

  87. L. Zang, Y. Zang, J. Magn. Magn. Mater. 321, L15 (2009)

    Article  ADS  Google Scholar 

  88. Ò. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)

    Article  ADS  Google Scholar 

  89. Ò. Iglesias, A. Labarta, Physica B 343, 286 (2004)

    Article  ADS  Google Scholar 

  90. A.A. Bukharov, A.S. Ovchinnikov, N.V. Baranov, K. Inoue, J. Phys.: Condens. Matter 22, 436003 (2010)

    ADS  Google Scholar 

  91. W. Jiang, V.C. Lo, B.D. Bai, J. Yang, Physica A 389, 2227 (2010)

    Article  ADS  Google Scholar 

  92. N. Lupu, L. Lostun, H. Chiriac, J. Appl. Phys. 107, 09E315 (2010)

    Google Scholar 

  93. D. Meyerhofer, Phys. Rev. 112, 413 (1958)

    Article  ADS  Google Scholar 

  94. K.B. Hoon, O.S. Young, Y.H. Young, W.G. Hong, Y.J. Yun, Y.Y. Kim, H.J. Kim, Sci. Technol. Adv. Mater. 11, 065003 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Keskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocakaplan, Y., Kantar, E. & Keskin, M. Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B 86, 420 (2013). https://doi.org/10.1140/epjb/e2013-40659-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40659-0

Keywords

Navigation