Skip to main content
Log in

Bell-CHSH function approach to quantum phase transitions in matrix product systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recently, nonlocality and Bell inequalities have been used to investigate quantum phase transitions (QPTs) in low-dimensional quantum systems. Nonlocality can be detected by the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) function. In this work, we extend the study of the Bell-CHSH function (BCF) to QPTs in matrix product systems (MPSs). In these kinds of QPTs, the ground-state energy remains analytical in the vicinity of the QPT points, and they are usually called MPS-QPTs. For several typical models, our results show that the BCF can signal MPS-QPTs very well. In addition, we find the BCF can capture signal of QPTs in unentangled states and classical states, for which other measures of quantum correlation (quantum entanglement and quantum discord) fail. Furthermore, we find that in these MPSs, there exists some kind of quantum correlation which cannot be characterized by entanglement, or by nonlocality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

  2. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  3. C. Castelnovo, C. Chamon, Phys. Rev. B 77, 054433 (2008)

    Article  ADS  Google Scholar 

  4. M.S. Sarandy, Phys. Rev. A 80, 02210 (2009)

    Article  Google Scholar 

  5. L. Justino, R. de Oliveira Thiago, Phys. Rev. A 85, 052128 (2012)

    Article  ADS  Google Scholar 

  6. F. Altintas, R. Eryigit, Ann. Phys. 27, 3084 (2012)

    ADS  Google Scholar 

  7. B. Cakmak, G. Karpat, Z. Gedik, Phys. Lett. A 376, 2982 (2012)

    Article  ADS  Google Scholar 

  8. Y.X. Chen, S.W. Li, Phys. Rev. A 81, 032120 (2010)

    Article  ADS  Google Scholar 

  9. M.F. Yang, Phys. Rev. A 71, 030302 (2005)

    Article  ADS  Google Scholar 

  10. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  11. X.G. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. Batle, M. Casas, Phys. Rev. A 82, 062101 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Batle, M.J. Casas, J. Phys. A 44, 445304 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. N. Gisin, Phys. Lett. A 154, 201 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  16. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  17. D.L. Deng, C.F. Wu, J.L. Chen, S.J. Gu, S.X. Yu, C.H. Oh, arXiv:1111.4341v1 (2010)

  18. A. Tribedi, I. Bose, Phys. Rev. A 75, 042304 (2007)

    Article  ADS  Google Scholar 

  19. M. Asoudeh, V. Karimipour, A. Sadrolashrafi, Phys. Rev. B 75, 224427 (2007)

    Article  ADS  Google Scholar 

  20. M.M. Wolf, G. Ortiz, F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 97, 11040 (2006)

    Article  Google Scholar 

  21. M. Asoudeh, V. Karimipour, A. Sadrolashrafi, Phys. Rev. A 76, 012320 (2007)

    Article  ADS  Google Scholar 

  22. M. Cozzini, R. Ionicioiu, P. Zanardi, Phys. Rev. B 76, 104420 (2007)

    Article  ADS  Google Scholar 

  23. A. Tribedi, I. Bose, Phys. Rev. A 77, 032307 (2008)

    Article  ADS  Google Scholar 

  24. Z.Y. Sun, L. Li, K.L. Yao, G.H. Du, J.W. Liu, B. Luo, N. Li, H.N. Li, Phys. Rev. A 82, 032310 (2010)

    Article  ADS  Google Scholar 

  25. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  26. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  27. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  28. Z.Y. Sun, L. Li, N. Li, K.L. Yao, J. Liu, B. Luo, G.H. Du, H.N. Li, Europhys. Lett. 95, 30008 (2011)

    Article  ADS  Google Scholar 

  29. Z.-Y. Sun, K.-L. Yao, W. Yao, D.-H. Zhang, Z.L. Liu, Phys. Rev. B 77, 014416 (2008)

    Article  ADS  Google Scholar 

  30. J. Niset, N.J. Cerf, Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  31. H. Buhrman, P. Høyer, H. Röhrig, S. Massar, Phys. Rev. A 73, 012321 (2006)

    Article  ADS  Google Scholar 

  32. S. Campbell, M. Paternostro, Phys. Rev. A 82, 042324 (2010)

    Article  ADS  Google Scholar 

  33. Q.Y. He, E.G. Cavalcanti, M.D. Reid, P.D. Drummond, Phys. Rev. Lett. 103, 180402 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. J.-D. Bancal, C. Branciard, N. Gisin, S. Pironio, Phys. Rev. Lett. 103, 090503 (2009)

    Article  ADS  Google Scholar 

  35. J.-D. Bancal, N. Brunner, N. Gisin, Y.-C. Liang, Phys. Rev. Lett. 106, 020405 (2011)

    Article  ADS  Google Scholar 

  36. R. de Oliveira Thiago, A. Saguia, M.S. Sarandy, Europhys. Lett. 100, 60004 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HL., Sun, ZY. & Wang, B. Bell-CHSH function approach to quantum phase transitions in matrix product systems. Eur. Phys. J. B 86, 279 (2013). https://doi.org/10.1140/epjb/e2013-40340-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40340-8

Keywords

Navigation