Skip to main content
Log in

Transmission of massless Dirac fermions through an array of random scatterers in terms of Fabry-Perot resonances: a Green’s function approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Transmission properties of massless Dirac fermions that are charge carriers in graphene through a double potential barrier can be completely understood in terms of resonances in Fabry-Perrot cavity. Using a Green’s function based approach we generalize this analysis to the case of transmission through an array of short range random scatterers modeled as delta function. The method helps to understand such disordered transport in terms of well-known optical phenomena such as Fabry-Perot resonances. Using this optical analogy we particularly provide a microscopic understanding of the interplay between disorder-induced localisation that is the hallmark of a non-relativistic system and two important properties of such massless Dirac fermions, namely, complete transmission at normal incidence and periodic dependence of transmission coefficient on the strength of the barrier that leads to a periodic resonant transmission. Within this framework we show that this leads to two different types of conductance behaviour as a function of the system size at the resonant and the off-resonance strengths of the delta function potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  2. M.Z. Hassan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  3. J. Otterbach, T.G. Unanyan, M. Fleischhauer, Phys. Rev. Lett. 102, 063602 (2006)

    Article  ADS  Google Scholar 

  4. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nat. Phys. 483, 302 (2012)

    Article  Google Scholar 

  5. R. Gerritsma, G. Kirchmair, F. Zhringer, E. Solano, R. Blatt, C.F. Roos, Nat. Phys. 463, 68 (2010)

    Article  Google Scholar 

  6. A.V. Balatsky, I. Vekhter, J.X. Zhu, Rev. Mod. Phys. 78, 373 (2006)

    Article  ADS  Google Scholar 

  7. J.M. Pereira Jr., F.M. Peeters, A. Chaves, G.A. Farias, Semicond. Sci. Technol. 25, 033002 (2010)

    Article  ADS  Google Scholar 

  8. M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)

    Article  ADS  Google Scholar 

  9. N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  10. E. Rossi, S. Das Sarma, Phys. Rev. Lett. 101, 166803 (2008)

    Article  ADS  Google Scholar 

  11. P.E. Allain, J.N. Fuchs, Eur. Phys. J. B 83, 301 (2011)

    Article  ADS  Google Scholar 

  12. I. Mihalache, D. Dragoman, J. Opt. Soc. Am. B 28, 1746 (2011)

    Article  ADS  Google Scholar 

  13. V.V. Cheianov, Science 315, 1252 (2007)

    Article  ADS  Google Scholar 

  14. C.-H. Park, Y.W. Son, L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 8, 2920 (2008)

    Article  ADS  Google Scholar 

  15. C.-H. Park, L. Yang, Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 101, 126804 (2008)

    Article  ADS  Google Scholar 

  16. M. Barbier, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 80, 205415 (2009)

    Article  ADS  Google Scholar 

  17. M.R. Masir, P. Vasilipoulos, F.M. Peeters, J. Phys: Condens. Matter 22, 465302 (2010)

    Article  Google Scholar 

  18. D.P. Arovas, L. Brey, H.A. Fertig, E.-A. Kim, K. Ziegler, New J. Phys. 12, 123020 (2010)

    Article  ADS  Google Scholar 

  19. M. Ramezani Masir, P. Vasilopoulos, A. Matulis, F.M. Peeters, Phys. Rev. B 77, 235443 (2008)

    Article  ADS  Google Scholar 

  20. S. Ghosh, M. Sharma, J. Phys: Condens. Matter 21, 292204 (2009)

    Article  Google Scholar 

  21. M. Sharma, S. Ghosh, J. Phys: Condens. Matter 23, 055501 (2011)

    Article  ADS  Google Scholar 

  22. L. Dell’Anna, A. De Martino, Phys. Rev. B 80, 155416 (2009)

    Article  ADS  Google Scholar 

  23. Y.P. Bliokh, V. Freilikher, F. Nori, Phys. Rev. B 81, 075410 (2010)

    Article  ADS  Google Scholar 

  24. N. Agrawal, S. Ghosh, M. Sharma, Int. J. Mod. Phys. B 27, 1341003 (2013)

    Article  ADS  Google Scholar 

  25. A.L. Vàzquez de Parga, F. Calleja, B. Borca, M.C.G. Passeggi Jr., J.J. Hinarejos, F. Guinea, R. Mirandaa, Phys. Rev. Lett. 100, 056807 (2008)

    Article  ADS  Google Scholar 

  26. I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Phys. Rev. Lett. 102, 056808 (2009)

    Article  ADS  Google Scholar 

  27. S.-L. Zhu, D.-W. Zhang, Z.D. Wang, Phys. Rev. Lett. 102, 210403 (2009)

    Article  ADS  Google Scholar 

  28. Y.P. Bilokh, V. Freilikher, S. Savelev, F. Nori, Phys. Rev. B 79, 075123 (2009)

    Article  ADS  Google Scholar 

  29. Q. Zhao, J. Gong, Phys. Rev. B 85, 104201 (2012)

    Article  ADS  Google Scholar 

  30. P. San-Jose, E. Prada, D.S. Golubev, Phys. Rev. B 76, 195445 (2007)

    Article  ADS  Google Scholar 

  31. M.G.E. da Luz, E.J. Heller, Bin Kang Cheng, J. Phys. A 31, 2975 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. Titov, Europhys. Lett. 79, 17004 (2007)

    Article  ADS  Google Scholar 

  33. M.R. Masir, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 82, 115417 (2010)

    Article  ADS  Google Scholar 

  34. G.A. Luna-Acosta, N.M. Makarov, Ann. Phys. 18, 887 (2009)

    Article  MATH  Google Scholar 

  35. V. Thareja, A Greens Function Approach to Electronic Transport in Graphen, M. Sc. Thesis, I.I.T. Delhi (2009)

  36. B. Sutherland, D.C. Mattis, Phys. Rev. A 24, 1194 (1981)

    Article  ADS  Google Scholar 

  37. C.L. Roy, Phys. Rev. A 47, 3417 (1993)

    Article  ADS  Google Scholar 

  38. B.H.J. McKellar, G.J. Stephenson Jr., Phys. Rev. C 35, 2262 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  39. J.F. Reading, J. Seigel, Phys. Rev. B 5, 556 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  40. A.V. Shytov, M.S. Rudner, L.S. Levitov, Phys. Rev. Lett. 101, 156804 (2008)

    Article  ADS  Google Scholar 

  41. A.F. Young, P. Kim, Ann. Rev. Condens. Matter Phys. 2, 1 (2010)

    Google Scholar 

  42. A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  43. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997), Chap. 5

  44. M. Titov, P.M. Ostrovsky, I.V. Gornyi, A. Schuessler, A.D. Mirlin, Phys. Rev. Lett. 104, 076802 (2010)

    Article  ADS  Google Scholar 

  45. S. Grover, S. Ghosh, M. Sharma, Model. Simul. Mater. Sci. Eng. 20, 045010 (2012)

    Article  ADS  Google Scholar 

  46. S.J. Xiong, Y. Xiong, Phys. Rev. B 76, 214204 (2007)

    Article  ADS  Google Scholar 

  47. P.M. Ostrovsky, M. Titov, S. Bera, I.V. Gornyi, A.D. Mirlin, Phys. Rev. Lett. 105, 266803 (2010)

    Article  ADS  Google Scholar 

  48. T.O. Wehling, A.V. Balatsky, M.I. Katsnelson, A.I. Lichtenstein, K. Scharnberg, R. Wiesendanger, Phys. Rev. B 75, 125425 (2007)

    Article  ADS  Google Scholar 

  49. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  50. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007)

    Article  ADS  Google Scholar 

  51. P.W. Anderson, Rev. Mod. Phys. 50, 191 (1977)

    Article  ADS  Google Scholar 

  52. J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.H. Castro Neto, B. Ozyilmaz, Nat. Phys. 9, 284 (2013)

    Article  Google Scholar 

  53. K.L. Lee, B. Gremaud, R. Han, B.G. Englert, C. Miniatura, Phys. Rev. A 80, 043411 (2009)

    Article  ADS  Google Scholar 

  54. S.-L. Zhu, B. Wang, L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007)

    Article  ADS  Google Scholar 

  55. O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, New J. Phys. 13, 035002 (2011)

    Article  ADS  Google Scholar 

  56. J. Billy, V. Josse, Z.C. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nat. Phys. 453, 891 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankalpa Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal Garg, N., Ghosh, S. & Sharma, M. Transmission of massless Dirac fermions through an array of random scatterers in terms of Fabry-Perot resonances: a Green’s function approach. Eur. Phys. J. B 86, 317 (2013). https://doi.org/10.1140/epjb/e2013-40278-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40278-9

Keywords

Navigation