Skip to main content
Log in

Multiphase density functional theory parameterization of the interatomic potential for silver and gold

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The ground state energies of Ag and Au in the face-centered cubic (FCC), body-centered cubic (BCC), simple cubic (SC) and the hypothetical diamond-like phase, and dimer were calculated as a function of bond length using density functional theory (DFT). These energies were then used to parameterize the many-body Gupta potential for Ag and Au. We propose a new parameterization scheme that adopts coordination dependence of the parameters using the well-known Tersoff potential as its starting point. This parameterization, over several phases of Ag and Au, was performed to guarantee transferability of the potentials and to make them appropriate for studies of related nanostructures. Depending on the structure, the energetics of the surface atoms play a crucial role in determining the details of the nanostructure. The accuracy of the parameters was tested by performing a 2 ns MD simulation of a cluster of 55 Ag atoms – a well studied cluster of Ag, the most stable structure being the icosahedral one. Within this time scale, the initial FCC lattice was found to transform to the icosahedral structure at room temperature. The new set of parameters for Ag was then used in a temperature dependent atom-by-atom deposition of Ag nanoclusters of up to 1000 atoms. We find a deposition temperature of 500 ± 50 K where low energy clusters are generated, suggesting an optimal annealing temperature of 500 K for Ag cluster synthesis. Surface energies were also calculated via a 3 ns MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Kim et al., Nanomed. Nanotechnol. Biol. Med. 3, 95 (2007)

    Article  Google Scholar 

  2. H.H. Lara, L. Ixtepan-Turrent, E.N. Garza Trevino, D.K. Singh, J. Nanobiotechnology 9, 38 (2011)

    Article  Google Scholar 

  3. S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom, Biomat. 30, 6341 (2009)

    Article  Google Scholar 

  4. N. Portney, M. Ozkan, Anal. Bioanal. Chem. 384, 620 (2006)

    Article  Google Scholar 

  5. X. Huang, I. El-Sayed, W. Qian, M. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006)

    Article  Google Scholar 

  6. Y.Q. Chen, C.J. Lu, Sens. Actuators B Chem. 135, 492 (2009)

    Article  ADS  Google Scholar 

  7. E. Filippo, A. Serra, D. Manno, Sens. Actuators B Chem. 138, 625 (2009)

    Article  Google Scholar 

  8. X. He, C. Hu, H. Liu, G. Du, Y. Xi, Y. Jiang, Sens. Actuators B Chem. 144, 289 (2010)

    Article  Google Scholar 

  9. M.R.H. Nezhad, J. Tashkhourian, J. Khodaveisi, J. Iran. Chem. Soc. 7, S83 (2010)

    Article  Google Scholar 

  10. R.F. Ngece, N. West, P.M. Ndangili, R.A. Olowu, A. Williams, N. Hendricks, S. Mailu, P. Baker, E. Iwuoha, Int. J. Electrochem. Sci. 6, 1820 (2011)

    Google Scholar 

  11. M.S. Bootharaju, T. Pradeep, Langmuir 27, 8134 (2011)

    Article  Google Scholar 

  12. H. Lee, K. Chou, K. Huang, Nanotechnology 16, 2436 (2005)

    Article  ADS  Google Scholar 

  13. D. Chen, X. Qiao, X. Qiu, J. Chen, J. Mater. Sci. 44, 1076 (2009)

    Article  ADS  Google Scholar 

  14. S.L.C. Hsu, R.T. Wu, Mater. Lett. 61, 3719 (2007)

    Article  Google Scholar 

  15. H. Lee, K. Chou, Z. Shih, Int. J. Adhes. Adhes. 25, 437 (2005)

    Article  Google Scholar 

  16. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010)

    Article  ADS  Google Scholar 

  17. Y.C. Hung, W.T. Hsu, T.Y. Lin, L. Fruk, Appl. Phys. Lett. 99, 253301 (2011)

    Article  ADS  Google Scholar 

  18. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  19. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  20. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nat. Nanotechnol. 5, 570 (2010)

    Article  ADS  Google Scholar 

  21. F. Svedberg, M. Kall, Faraday Disc. 132, 35 (2006)

    Article  ADS  Google Scholar 

  22. S.R. Bhattacharyya, D. Datta, I. Shyjumon, B.M. Smirnov, T.K. Chini, D. Ghose, R. Hippler, J. Phys. D 42, 035306 (2009)

    Article  ADS  Google Scholar 

  23. C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, J. Med. Biol. Eng. 29, 276 (2009)

    Google Scholar 

  24. M.A. MacDonald, D.M. Chevrier, P. Zhang, H. Qian, R. Jin, J. Phys. Chem. C 115, 15282 (2011)

    Article  Google Scholar 

  25. H. Qian, M. Zhu, U.N. Andersen, R. Jin, J. Phys. Chem. A 113, 4281 (2009)

    Article  Google Scholar 

  26. H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Analyst 135, 1406 (2010)

    Article  ADS  Google Scholar 

  27. J.T. Petty, C. Fan, S.P. Story, B. Sengupta, A.S.J. Iyer, Z. Prudowsky, R.M. Dickson, J. Phys. Chem. Lett. 1, 2524 (2010)

    Article  Google Scholar 

  28. M. Takesue, T. Tomura, M. Yamada, K. Hata, S. Kuwamoto, T. Yonezawa, J. Am. Chem. Soc. 133, 14164 (2011)

    Article  Google Scholar 

  29. D. Reinhard, B. Hall, D. Ugarte, R. Monot, Phys. Rev. B 55, 7868 (1997)

    Article  ADS  Google Scholar 

  30. M. Blom, D. Schooss, J. Stairs, M. Kappes, J. Chem. Phys. 124, 244308 (2006)

    Article  ADS  Google Scholar 

  31. X. Yang, W. Cai, X. Shao, J. Phys. Chem. A 111, 5048 (2007)

    Article  Google Scholar 

  32. H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011)

    Article  ADS  Google Scholar 

  33. L. Jensen, L.L. Zhao, G.C. Schatz, J. Phys. Chem. C 111, 4756 (2007)

    Article  Google Scholar 

  34. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  35. K. Michaelian, N. Rendon, I. Garzon, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  36. A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)

    Article  ADS  Google Scholar 

  37. J. Doye, D. Wales, New J. Chem. 22, 733 (1998)

    Article  Google Scholar 

  38. J. Mei, J.W. Davenport, G.W. Fernando, Phys. Rev. B 43, 4653 (1991)

    Article  ADS  Google Scholar 

  39. T. Shibata, B.A. Bunker, Z.Y. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, J. Am. Chem. Soc. 124, 11989 (2002)

    Article  Google Scholar 

  40. S. Zhao, S. Wang, H. Ye, J. Phys. Soc. Jpn 70, 2953 (2001)

    Article  ADS  Google Scholar 

  41. X. Wu, Y. Wu, X. Kai, G. Wu, Y. Chen, Chem. Phys. 390, 36 (2011)

    Article  ADS  Google Scholar 

  42. F. Pittaway, L.O. Paz-Borbon, R.L. Johnston, H. Arslan, R. Ferrando, C. Mottet, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 113, 9141 (2009)

    Article  Google Scholar 

  43. X. Shao, X. Liu, W. Cai, J. Chem. Theor. Comput. 1, 762 (2005)

    Article  Google Scholar 

  44. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  46. C. Kittel, Introduction to Solid State Physics, 4th edn. (John Wiley & Sons, Inc., New York, 1971)

  47. J. Neighbours, G. Alers, Phys. Rev. 111, 707 (1958)

    Article  ADS  Google Scholar 

  48. R.L. Chantry, W. Siriwatcharapiboon, S.L. Horswell, A.J. Logsdail, R.L. Johnston, Z.Y. Li, J. Phys. Chem. C 116, 10312 (2012)

    Article  Google Scholar 

  49. M. Needels, A.M. Rappe, P.D. Bristowe, J.D. Joannopoulos, Phys. Rev. B 46, 9768 (1992)

    Article  ADS  Google Scholar 

  50. P. Soderlind, Phys. Rev. B 66, 176201 (2002)

    Article  ADS  Google Scholar 

  51. Q.M. Wei, X.Y. Liu, A. Misra, Appl. Phys. Lett. 98, 111907 (2011)

    Article  ADS  Google Scholar 

  52. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  53. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  54. C.L. Dias, T. Ala-Nissila, M. Grant, M. Karttunen, J. Chem. Phys. 131, 054505 (2009)

    Article  ADS  Google Scholar 

  55. M. Morse, Chem. Rev. 86, 1049 (1986)

    Article  Google Scholar 

  56. F.R. Negreiros, Z. Kuntova, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli, J. Chem. Phys. 132, 234703 (2010)

    Article  ADS  Google Scholar 

  57. V. Beutel, H.G. Kramer, G.L. Bhale, M. Kuhn, K. Weyers, W. Demtroder, J. Chem. Phys. 98, 2699 (1993)

    Article  ADS  Google Scholar 

  58. G. Wang, J. BelBruno, S. Kenny, R. Smith, Phys. Rev. B 69, 195412 (2004)

    Article  ADS  Google Scholar 

  59. S. Nigam, C. Majumder, Langmuir 26, 18776 (2010)

    Article  Google Scholar 

  60. K. Huber, H. Hertzberg, Molecular Spectra and Molecular Structure Constants of Diatomic Molecules (van Nostrand, New York, 1979), Vol. 4

  61. A. James, P. Kowalczyk, B. Simard, J. Pinegar, M. Morse, J. Mol. Spectrosc. 168, 248 (1994)

    Article  ADS  Google Scholar 

  62. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  63. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  64. W. Triftshauser, J.D. McGervey, Appl. Phys. 6, 177 (1975)

    Article  ADS  Google Scholar 

  65. I. Vasiliev, B. Medasani, Surface properties of silver and aluminum nanoclusters - art. no. 690207, in Quantum dots, particles, and nanoclusters V, edited by K. Eyink, F. Szmulowicz, D. Huffaker (SPIE, 2008). ISBN 978-0-8194-7077-5/ Conference on Quantum Dots, Particles, and Nanoclusters IV, San Jose, CA (2008)

  66. W.R. Tyson, W.A. Miller, Surf. Sci. 62, 267 (1977)

    Article  ADS  Google Scholar 

  67. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar, Surf. Sci. 411, 186 (1998)

    Article  ADS  Google Scholar 

  68. V. Fiorentini, M. Methfessel, J. Phys.: Condens. Matter 8, 6525 (1996)

    Article  ADS  Google Scholar 

  69. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  70. H.L. Skriver, N.M. Rosengaad, Phys. Rev. B 46, 7157 (1992)

    Article  ADS  Google Scholar 

  71. W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, J. Am. Chem. Soc. 130, 15581 (2008)

    Article  Google Scholar 

  72. B.D. Todd, R.M. Lynden-Bell, Surf. Sci. 281, 191 (1993)

    Article  ADS  Google Scholar 

  73. R. Fournier, J. Chem. Phys. 115, 2165 (2001)

    Article  ADS  Google Scholar 

  74. W. Huang, X. Lai, R. Xu, Chem. Phys. Lett. 507, 199 (2011)

    Article  ADS  Google Scholar 

  75. P.A. Doyle, P.S. Turner, Acta Cryst. A 24, 390 (1968)

    Article  Google Scholar 

  76. M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. AlSalhi, Nano. Res. Lett. 6, 434 (2011)

    Article  Google Scholar 

  77. J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, J. Electron. Mater. 40, 2268 (2011)

    Article  ADS  Google Scholar 

  78. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystaline and amorphous material (Wiley, New York, 1954)

  79. R. Govindaraj, R. Kesavamoorthy, R. Mythili, B. Viswanathan, J. Appl. Phys. 90, 958 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Karttunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titantah, J., Karttunen, M. Multiphase density functional theory parameterization of the interatomic potential for silver and gold. Eur. Phys. J. B 86, 288 (2013). https://doi.org/10.1140/epjb/e2013-40067-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40067-6

Keywords

Navigation