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Abstract. We study the non-equilibrium dynamics of a one-dimensional system of hard core bosons (HCBs)
in the presence of an onsite potential (with an alternating sign between the odd and even sites) which shows
a quantum phase transition (QPT) from the superfluid (SF) phase to the so-called “Mott Insulator” (MI)
phase. The ground state quantum fidelity shows a sharp dip at the quantum critical point (QCP) while
the fidelity susceptibility shows a divergence right there with its scaling given in terms of the correlation
length exponent of the QPT. We then study the evolution of this bosonic system following a quench in
which the magnitude of the alternating potential is changed starting from zero (the SF phase) to a non-
zero value (the MI phase) according to a half Rosen-Zener (HRZ) scheme or brought back to the initial
value following a full Rosen-Zener (FRZ) scheme. The local von Neumann entropy density is calculated in
the final MI phase (following the HRZ quench) and is found to be less than the equilibrium value (log 2)
due to the defects generated in the final state as a result of the quenching starting from the QCP of the
system. We also briefly dwell on the FRZ quenching scheme in which the system is finally in the SF phase
through the intermediate MI phase and calculate the reduction in the supercurrent and the non-zero value
of the residual local entropy density in the final state. Finally, the loss of coherence of a qubit (globally
and weekly coupled to the HCB system) which is initially in a pure state is investigated by calculating
the time-dependence of the decoherence factor when the HCB chain evolves under a HRZ scheme starting
from the SF phase. This result is compared with that of the sudden quench limit of the half Rosen-Zener
scheme where an exact analytical form of the decoherence factor can be derived.

1 Introduction

Recent advancements in experiments on ultracold atoms
trapped in optical lattices have facilitated the realiza-
tion of ultracold vapors of bosonic atoms, and hence
have opened up new directions towards the experimen-
tal studies of low dimensional bosonic systems [1,2]. For
example, following the pioneering experiments indicat-
ing a superfluid (SF) to a Mott insulator (MI) transi-
tion in optical lattices in three-dimension [3] (and also
in one dimension [4]) and the corresponding study on the
non-equilibrium dynamics [5], there is an upsurge in the
studies of quantum phase transitions (QPTs) [6–10] and
dynamics of trapped atoms in optical lattices. More in-
terestingly, two dimensional optical lattices have made
the quasi one dimensional regime experimentally acces-
sible [1,11] by keeping the transverse potentials much
higher than the longitudinal potential. By appropriately
tuning the longitudinal potential, different limits of the
bosonic Hubbard model have been realized. One of such
limits happens to be the hard-core boson (HCB) limit
(or the Tonks-Girardeu [12–14] limit), where two bosons
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cannot occupy the same site; this limit has also been
achieved in an optical lattice [15,16]. These experiments
have paved the way for a plethora of theoretical stud-
ies in low-dimensional bosonic systems [17,18] especially
from the viewpoint of the SF to the MI transition [19–21]
and related non-equilibrium dynamics [22,23]. The HCB
systems have turned out to be very advantageous in this
context [24–27].

In parallel, there have been numerous studies which
attempt to bridge a connection between QPTs [6–10]
and quantum information theoretic measures like con-
currence [28–30], quantum fidelity [31–45], quantum dis-
cord [46–48], entanglement entropy [49,50] etc. These
measures enable us to detect a QCP and they also show
distinctive scaling relations close to it characterized by
some of the associated critical exponents. Similarly, the
decoherence (or loss of phase information) [51–55] of a
qubit coupled to a quantum critical system is also being
investigated [56,57].

The scaling of the density of defects (or heat) produced
following a slow [58,59] or rapid quenching [60,61] across
(or starting from) a QCP has also attracted attention of
the scientists. Defects generated in the final state of the
quantum system due to the quenching through a QCP in
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turn lead to non-zero quantum correlations (for example,
non-zero local entropy density [62,63], concurrence [64],
quantum discord [65], etc.) in the final state which are
otherwise absent in the defect free final state. These infor-
mation theoretic measures have also been found to satisfy
scaling relations identical to that of the defect density in
some cases. For recent reviews, see [66–68].

In this paper, we study the dynamics of a one-
dimensional lattice of HCBs at half-filling in which bosons
are subjected to an onsite potential. The model has a SF
long-range order which persists up to a threshold value
of the onsite potential at which there is a QPT from the
SF to the MI phase which is a chemical potential driven
phase transition. Beyond the finite threshold value of the
onsite potential (at which a gap opens up in the spec-
trum) the system becomes an insulator due to correlation
effects and we have a Mott insulator in the true sense of
the term. We are however interested in the case where
the onsite potential is site-dependent (rather, alternates
in sign on the even and odd sites); under this condition
the SF long-range order is destroyed as soon as the poten-
tial is switched on. We put a word of caution here; in our
case the site-dependent onsite potential breaks the trans-
lation symmetry of the system and any non-zero value of
this potential opens up a gap in the spectrum. Though it
is not a MI in its true sense we continue to call it so as has
been done in literature [27]. We note that this model has
been studied under a (HRZ) quenching scheme [69,70] in
which the magnitude of the alternating onsite potential is
quenched from zero to a non-zero value and the residual
supercurrent in the MI phase has been estimated [27].

The motivation of this work is the following: although
there has been a series of studies of quantum critical dy-
namics which involve Landau-Zener tunneling [71,72] (for
many examples, see Refs. [66–68]), the Rosen-Zener (RZ)
tunneling (for which the non-adiabatic excitation proba-
bility can also be exactly calculated) has received rela-
tively less attention. We use the integrability of the one-
dimensional HCB system in an alternating potential along
with the exact analytical results for the HRZ quenching to
investigate the generation of local entropy in the HCB sys-
tem in its final MI state following the quench and also the
reduction in the supercurrent and residual local entropy
in the SF phase following the FRZ quench. We also cal-
culate the decoherence of a qubit connected to the HCB
system following a HRZ quenching of the magnitude of
the onsite potential. Given the current interest in QPTs,
dynamics and quantum information as discussed above,
these results are expected to be useful both from experi-
mental and theoretical viewpoints.

The paper is organized in the following way: in Sec-
tion 2, we describe the QPT in the HCB chain in an alter-
nating potential by analyzing the energy spectrum of the
Hamiltonian; any non-zero value of the alternating poten-
tial leads to an energy gap in an otherwise gapless spec-
trum so that the system is in the MI phase. In Section 3,
we show how this QPT can be detected and character-
ized by investigating the ground state fidelity and fidelity
susceptibility.

The dynamics of the HCB chain is studied in Section 4.
In Section 4.1, we investigate the single site (local) von
Neumann entropy density in the final MI phase following
the HRZ quenching for the HCB system. We note that the
local entropy density is zero in the SF phase and is equal
to log 2 in the MI phase because of its bipartite structure.
We, however, find that the value of this entropy in the
final MI phase reached after the quenching is less than
log 2 by an amount which depends on the parameters of
the HRZ quenching. This deviation is due to the fact that
the system is quenched out of the SF phase (which is also
a gapless QCP) at a finite rate which leads to the defects
resulting in a surviving supercurrent and reduced local
entropy density in the final MI phase. In Section 4.2, we
study the HCB chain under the full Rosen-Zener (FRZ)
quenching scheme in which the system is finally brought
back to the SF phase through the intermediate MI phase
and the surviving supercurrent and the residual local en-
tropy density are calculated.

Finally in Section 5 a qubit (or a central spin-1/2) is
globally coupled to the HCB chain. Our focus is limited
to the case when the coupling between the qubit and the
HCB chain, which in fact plays the role of an environment
to which the qubit is coupled, is very weak. We study
the decoherence of the qubit by calculating the decoher-
ence factor in the final state when the onsite potential is
changed from zero (the SF phase) to a finite value (the MI
phase) following a HRZ quenching scheme in Section 5.1.
An exact expression of the decoherence factor of the qubit
is derived analytically in the sudden quench limit in Sec-
tion 5.2 where the alternating potential is instantaneously
switched on and the results are compared to those of the
previous case.

2 The model

We consider the Lattice-Tonks-Girardeu gas (hard-core)
limit of the one-dimensional Bosonic Hubbard model [18]
given by the Hamiltonian

H = −w
∑

l

(
b†l bl+1 + h.c

)
+ V

∑

l

(−1)lb†l bl, (1)

where w is the hopping amplitude, V is the onsite poten-
tial; bl and b†l are the bosonic annihilation and creation
operators at the lth site of the lattice, respectively. These
bosonic operators satisfy the canonical commutation rela-
tion [b†l , bm] = δlm; additionally, the hard core condition
demands, (bl)2 = 0 = (b†l )

2. The Hamiltonian (1) under-
goes a QPT from the gapless SF phase to the gapped MI
phase for any non-zero value of the alternating potential
V as shown below.

This Hamiltonian can be exactly solved using Jordan-
Wigner (JW) transformations [73] given by

b†l =

[
∏

m<l

exp
(
a†mam

)
]
a†l , (2)
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Fig. 1. The energy spectrum (6) for the model (1) in the
reduced Brillouin zone. In the SF phase (V = 0), the spectrum
is gapless at k = π/2 (red dashed). A non-zero V generates
a gap in the excitation spectrum at the critical modes are at
k = ±π/2.

where a†l and al are the JW fermionic operators satisfy-
ing the fermion anti-commutation relations {a†l , am} =
δlm, {al, am} = 0. Using JW transformation followed
by the Fourier transformation, the energy spectrum of
Hamiltonian (1) can be exactly obtained. In terms of
JW fermions, the Hamiltonian can be re-written as H =
H0 + Hd, where,

H0 = −
∑

|k|<π/2

2w cos k
(
a†kak − a†k+πak+π

)
,

Hd =
∑

|k|<π/2

V
(
a†k+πak + a†kak+π

)
. (3)

Evidently, the mode with wave vector k couples to the
(k + π)-mode, one can rewrite the Hamiltonian in the re-
duced 2 × 2 form,

H = ⊗
∑

|k|<π/2

Hk, (4)

with

Hk =
(

2w cos k −V
−V −2w cos k

)
, (5)

and the energy spectrum (see Fig. 1) is given by

Ek =
√

4w2 cos2 k + V 2. (6)

We note that the spectrum (6) is gapped even for an in-
finitesimal alternating potential implying that the system
is in the MI phase for any V �= 0. On the other hand,
for V = 0, the spectrum is gapless for the critical mode
k = π/2, and the HCB chain is in the SF phase. It should
be noted that the critical modes at k = ±π/2 are also the
Fermi levels since we are working at half-filling. From the
spectrum, we find that the QPT at V = 0 is character-
ized by the correlation length exponents ν = 1 and the
dynamical exponent z = 1.

3 Fidelity and fidelity susceptibility

One of the most widely used quantum information the-
oretic measure for detecting and characterizing quantum
phase transitions is ground state quantum fidelity [32–36]
which is the magnitude of the overlap of the two ground
states of a quantum many body system belonging to differ-
ent values of a parameter of the Hamiltonian. Referring
to the Hamiltonian (1), we can define quantum fidelity
F (V, V + δ) between two ground states with the alternat-
ing potentials V and V + δ, respectively, given by

F = | 〈ψ0(V )|ψ0(V + δ)〉 | = 1 − δ2

2
LdχF + . . . , (7)

where we have assumed a small system size (L) and also
δ → 0 limit, which allow us to truncate the above series at
the δ2 order; in the present problem spatial dimensionality
d = 1. The quantity χF = −(2/Ld)ln(F )/δ2|δ→0, called
the fidelity susceptibility density [33–45], is a measure of
the rate of the change of the ground state wave function
when the parameter V is changed infinitesimally. Usually
quantum fidelity shows a sharp dip at a QCP where χF

diverges with the system size; the universal scaling of χF is
given in terms of some of the critical exponents associated
with the QPT.

To calculate F and χF in the vicinity of the
QPT of Hamiltonian (1), we use the reduced two-level
Hamiltonian (5). One can use Bogoliubov transformation
to obtain the ground state wave function for a particular
momentum mode and a given potential V in the form

|ψ0(k, V )〉 = cos(θk(V ))|k〉 + sin(θk(V ))|k + π〉 (8)

where tan(2θk(V )) = −V/(2w cos k). An exact expres-
sion of quantum fidelity can be then obtained using
equations (7) and (8):

F =
∏

k

| cos(θk(V ) − θk(V + δ))|

= exp

[
L

2π

∫ π
2 − π

L

−π
2 + π

L

dk log(| cos(θk(V ) − θk(V + δ)|)
]
.

(9)

We also find that χF scales as L near V = 0 (SF phase)
and as V −1 deep inside MI phase (see Fig. 3) . Expand-
ing around the critical mode k = π/2, one arrives at the
simplified form

F = exp
[

δ2

32αV 2

{
tan−1(α) − tan−1[α(L − 1)]

− α

1 + α2
+

α(L− 1)
1 + α2(L− 1)2

}]
; α =

2wπ
V L

. (10)

The expansion around the critical mode is meaningful be-
cause the integrand in the argument of the exponential
in equation (9) goes to zero near the critical modes. For
modes away from the critical mode, the integrand is highly
negative and hence their contribution to fidelity is vanish-
ingly small for large L. As shown in Figure 2, the fidelity
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Fig. 2. Fidelity shows a clear dip at V = 0. The inset shows
that a peak occurs in the fidelity susceptibility at the critical
point. Clearly, the value of fidelity drops from unity even away
from the QCP as the system size increases.

Fig. 3. Numercially obtained scaling of χF : away from the
QCP, χF ∼ V −1, while in the vicinity QCP, χF ∼ L (see inset).
These scaling relations are in agreement with the theoretical
prediction.

shows a dip and the susceptibility shows a peak at the
QCP, V = 0. This is in congruence with the generic scal-
ing [41–45], χF ∼ L2/ν−d near the QCP (L � V −ν),
and χF ∼ V νd−2 away from the QCP (L 	 V −ν), with
ν = d = 1.

4 RZ quenching of the on-site potential

In this section, we shall study the HCB model under the
HRZ and FRZ quenching schemes and calculate the von
Neumann entropy and the diagonal entropy following the
HRZ quench and the supercurrent density and the von
Neumann entropy following the FRZ quench.

Fig. 4. The FRZ and HRZ quenching schemes for V (t). We
get the sudden quench limit by taking τ → 0 in the HRZ case.

4.1 Von Neumann entropy and diagonal entropy
of the HCB chain following the HRZ quench

In this section, we shall employ the HRZ quenching
scheme in which the alternating potential is changed from
zero to a finite value V0, (see Fig. 4) in a non-linear fashion
given by [27,70]

V (t) =

{
V0

(
sech

(
πt
τ

))
t < 0

V0 t ≥ 0.
(11)

This implies that the system is quenched from the SF
phase (t→ −∞) to the MI phase (t = 0).

In order to calculate the time evolution of |ψ(t)〉 at a
given instant t, let us consider a generic state for a given
momentum mode: |ψk(t)〉 = s(t)|k〉 + p(t)|k + π〉. Using
Schrödinger equations i∂|ψk(t)〉/∂t = Hk|ψk(t)〉, it can
be shown that time evolution of the probability ampli-
tudes s(t) and p(t) are dictated by the equations [27,69]

iṡ(t) = s(t)2w cos(k) + p(t)V (t),
iṗ(t) = −p(t)2w cos(k) + s(t)V (t). (12)

Using transformations S(t) = exp(2iwt cos k)s(t), P (t) =
exp(−2iwt cos k)p(t), we get

S̈ = −
(

V0

cosh
(

πt
τ

)
)2

S

+
[
4iw cos(k) − π

τ
tanh

(
πt

τ

)]
Ṡ, (13)

which can be reduced to a hypergeometric form with the
initial conditions, |S(−∞)| = 1 and |P (−∞)| = 0. Ex-
panding near the critical mode (k = π/2), one eventually
finds the solution at t = 0 of the form:

p(0) = −i sin
(
V0τ

2

)
,

s(0) = cos
(
V0τ

2

)
. (14)
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Exploiting the continuity condition of the wave function
at t = 0, let us write the generic wave function for t > 0
in the form

|ψk(t)〉 = cg|g(t)〉 + ce|e(t)〉
= cge

iEkt|g(0)〉 + cee
−iEkt|e(0)〉, (15)

where |g〉 and |e〉 are the ground state and excited state
wave functions (with energies −Ek and Ek) with proba-
bility amplitudes cg and ce, respectively. Expressing equa-
tion (15) in terms of momentum modes |k〉 and |k+π〉 and
using Bogoliubov transformation, we get

|ψk(t)〉 =(s(0)Ak(t) + p(0)Bk(t))|k〉
+ (s(0)Bk(t) + p(0)A∗

k(t))|k + π〉, (16)

where Ak(t) = cos(Ekt) + i cos(2θk) sin(Ekt), Bk(t) =
i sin(2θk) sin(Ekt) and Ek =

√
4w2 cos2 k + V 2

0 .
Using the wave function following the quench at an

instant t given in equation (16), we are now in a po-
sition to calculate the single-site von Neumann entropy
given by −Tr ρ log(ρ) where ρ is the density matrix con-
structed from |ψk(t)〉. Ideally in the MI phase, the local
von Neumann entropy density s = log 2 (the MI phase
is in a pure state and hence the global entropy is zero.
However, the (single site) local entropy obtained by in-
tegrating over the momentum modes is non-zero because
of the bipartite structure of the MI phase. Interpreting in
terms of the spin variables, when observed locally upon
“coarse-graining” in momentum [62] both the spin states
appear with an equal probability (=1/2) which makes the
entropy density log 2).

In the present context, however, the MI phase is
reached through a non-equilibrium variation of the alter-
nating on-site potential starting from the SF phase at a
finite rate and hence the entropy density in the MI phase
gets reduced. To calculate it, we decompose the density
matrix in a direct product form, ρ =

⊗∏
k ρk, where ρk

is the reduced density matrix for the kth mode. Conse-
quently, the entropy density turns to be

s = − 1
π

∫ π/2

−π/2

dk Tr ρk log(ρk). (17)

To calculate ρk following the HRZ, we use equation (16);
we are interested in the long-time average of s and since
the integrals over k and t commute we can take the long-
time average of the terms of ρk itself before doing the
integral over k. Taking the long time average of the terms
of ρk, we find

ρk =

⎛

⎜⎝

(1+cos2 2θk cos(V0τ))
2

cos 2θk sin 2θk cos(V0τ)
2

cos 2θk sin 2θk cos(V0τ)
2

(1−cos2 2θk cos(V0τ))
2

⎞

⎟⎠ . (18)

Diagonalizing the density matrix, the entropy density can
be expressed in terms of the eigenvalues λ±,k as

s = − 1
π

∫ π/2

−π/2

dk λ+,k log(λ+,k) + λ−,k log(λ−,k), (19)

Fig. 5. Variation of s with V0 in the MI phase (with w = 1).
The inset justifies that s scales linearly with V0 for small V0.

Fig. 6. Variation of s with τ in the MI phase with w = 1. The
inset shows that log s scales lineally with log τ with a slope =2.

where λ±,k = 1
2 (1 ± cos 2θk cos(V0τ)). The von Neumann

entropy density s increases linearly with V0 for V0 < 2w,
and saturates to the maximum value of log 2 for higher
values of V0 (see Fig. 5). On the other hand, s is found to
scale quadratically with τ (see Fig. 6). As mentioned al-
ready that for a HRZ quenching, the parameters V0 and τ
are not on an identical footing which is also reflected in
the scaling of s.

One can also calculate the diagonal entropy [74] de-
fined as Sd(t) =

∑
n ρnn(t) log ρnn(t) where ρnn(t) are

the diagonal terms of the density matrix obtained from
equation (16) (without any time averaging). The diagonal
entropy Sd(t) shows an oscillatory behavior (see Fig. 7)
similar to the supercurrent in the MI phase following a
similar quench [27]. The scaling of the diagonal entropy Sd

with V0 and τ is same as compared to the scaling of von
Neumann entropy density s in both regions of V0.

http://www.epj.org


Page 6 of 10 Eur. Phys. J. B (2013) 86: 204

Fig. 7. The diagonal entropy density Sd plotted against time
shows an oscillatory interference pattern similar to that found
in the surviving supercurrent in the MI phase after a similar
as reported in [27].

4.2 Current and von Neumann entropy studies
after a FRZ quench

In this subsection, we shall estimate the supercurrent and
von Neumann entropy following a FRZ quench of the HCB
chain (without the qubit) using the time-evolution of the
potential given by the following form:

V (t) = V0 sech
(
πt

τ

)
, −∞ < t < +∞; (20)

the system is initially (t → −∞) in the SF phase and fi-
nally brought back to the SF phase (as t → ∞) through
the intermediate MI phase. We study the time evolu-
tion of the system after the quenching process gets over
(i.e., in the final SF phase). In the SF phase the reduced
Hamiltonian is diagonal in the basis |k〉 and |k+ π〉 (with
|k〉 (|k + π〉) being the ground state (excited state)). The
wave function of the HCB system immediately after the
FRZ quench (which we set as t = 0) can be written as a
linear combination of these basis states,

|ψ(t = 0)〉 =
√

1 − Pk|k〉 +
√
Pk|k + π〉, (21)

where Pk is the RZ non-adiabatic transition formula [69]:

Pk = sin2

(
V0τ

2

)
sech2[2τw cos k]. (22)

The time-evolved wave function at some later time t can
readily be written as

|ψ(t)〉 =
√

1 − Pke
−iEkt|k〉 +

√
Pke

iEkt|k + π〉, (23)

where Ek = −2w cos k in the SF phase. In order to
calculate supercurrent one has to apply a boost to the
Hamiltonian which takes the form −w∑

l(e
−iνb†l bl+1 +

h.c.) [27]; consequently, the momentum value gets shifted

Fig. 8. The figure shows the variation supercurrent j against τ .
The inset shows the plot of log(j) versus log(τ ), which is a
straight line with slope 2.

from k to k + ν. Expressing the super-current operator,
ĵ(t) = iw

L

∑
l(e

−iνb†l+1bl − h.c.), in the Fourier space, one
can find its expectation value with respect to the boosted
counterpart of the state (23)

j(t) =
w

π

∫ π/2

−π/2

dk sin(k + ν)(1 − 2Pk+ν),

=
2w sin ν

π

[
1 − 2 (V0τ)

2
]
. (24)

The above result leads the following interesting observa-
tions: in the limit of small ν, sin(ν) ∼ ν, j ∼ ν which is
identical to the ν dependence of the supercurrent in the
initial SF phase. Secondly, the supercurrent becomes inde-
pendent of time after the FRZ quench. This is due to the
fact that at the final time HCB system reaches its eigen
states. Thirdly, because of the passage through the MI
phase starting from a QCP, the current in the final state
is reduced from its initial value (at t→ −∞), (2w sin ν/)π,
by a factor V 2

0 τ
2. It is also to be noted that the correction

term of the supercurrent is a function of the combination
V0τ implying that V0 and τ are on the same footing for
the FRZ quenching. This result is numerically verified as
shown in Figure 8.

In a similar spirit, one can calculate the residual von
Neumann entropy density in the final SF phase. The
rapidly oscillating off-diagonal terms of the reduced den-
sity matrix constructed from the wave function given in
equation (23), vanish over long time averaging [62,63] so
that the decohered reduced density matrix has a diago-
nal form. Calculating the local entropy density using this
decohered reduced denstity matrix, one can show that
s ∼ V 2

0 τ
2 (see Fig. 9). One interesting point should be

highlighted here: the quenching through the MI phase gen-
erates defects in the SF phase which result in a reduction
of the supercurrent and a non-zero value of s both scaling
as V 2

o τ
2.
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Fig. 9. Variation of s with V0τ in the SF phase. The inset
shows that s ∼ V 2

0 τ 2 for small V0 and τ .

5 Decoherence and HRZ quenching

5.1 Decoherence following a HRZ quench

In this section, we shall explore the decoherence of a
qubit coupled to the environment, chosen to be the HCB
chain (1), which is driven following the HRZ quench-
ing scheme. We assume a global coupling between the
qubit and all the bosons of the model 1 with the coupling
Hamiltonian given by

HSE = −δ
∑

l

b†l blσ
z
S , (25)

where σz
S represents the qubit, b†l bl is the number density

of the environmental HCB chain at site l; δ is the coupling
parameter between system and environment (the form of
the coupling Hamiltonian (25) can be interpreted in the
following way: the HCB chain can be recast to a trans-
verse XY spin chain in a transverse field in the z-direction;
the z-component of the spin at the site l is coupled to the
z-component of the central qubit). In subsequent sections,
we shall work in the limit of a weak coupling between the
central qubit and HCB system (i.e., δ → 0).

Due to the coupling to the central qubit, the time evo-
lution of the environmental bosonic chain is split into two
channels, corresponding to the | ↑〉 (≡ +1) and | ↓〉 (≡ −1)
state of the the qubit. Using equation (5), we find that
the reduced Hamiltonians of the HCB system for these
two channels, denoted by H+

k and H−
k , respectively, are

given by

H±
k =

(
2w cos k −(V ± δ)

−(V ± δ) −2w cos k

)
. (26)

We shall denote the corresponding time-evolved states
of the environmental Hamiltonian corresponding to these
two branches as |ψ+(t)〉 and |ψ−(t)〉, respectively.

Fig. 10. For δ → 0 and small τ , we verify the approximation
made in equation (27) by plotting the exact expression and the
approximate expression for all time. They are in a very good
agreement with each other.

One can show that in the limit δ → 0, the off-diagonal
terms of the Hamiltonian (26) can be written as

V (t) ± δ = V ±(t) = (V0 ± δ)sech
πt

τ±
, (27)

where τ± = τ ±αδτ , with α being a constant of the order
of unity. It can be shown numerically that α is not a func-
tion of time as well (see Fig. 10). It is to be noted that we
have made a a small τ approximation; we intend to study
the dynamics close to the sudden quench limit.

When compared with the RZ form equation (11), this
approximation implies the following: in the limit of a
very weak coupling between the qubit and the environ-
ment, the evolution of the two channels can be viewed as
two independent HRZ quenches with final potentials and
quenching parameters [(V0 + δ), τ+] and [(V0 − δ), τ−],
respectively.

To study the decoherence of the qubit coupled to the
HCB chain following the HRZ quench (t > 0), one in-
vestigates the reduced density matrix of the qubit. We
assume that the qubit is initially in a pure state at
t → −∞. The off-diagonal terms of the reduced den-
sity matrix for t > 0 incorporate the decoherence factor
D(t) = |〈ψ+(t)|ψ−(t)〉|2, which measures the decoherence
of the qubit. A non-zero value (less than unity) of D(t)
implies that the qubit is in a mixed state and initial phase
coherence is lost. Considering the two-level structure of
the reduced Hamiltonian of the environmental HCB chain
(see Eq. (26)) we get,

D(t) =
∏

k

|Dk(t)|2; Dk(t) = |〈ψ+
k (t)|ψ−

k (t)〉|, (28)

which can be put in the form

D(t) = |〈ψ+(t)|ψ−(t)〉|2

= exp

(
L

2π

∫ π/2

k=−π/2

ln(|Dk(t)|2)dk
)
. (29)
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To evaluate D(t), we now use equation (16) and work in
the limit δ → 0, when one can approximate θ±k (defined
after Eq. (8) with V → V0 ± δ) as

θ±k = θk + δ
∂θ±k
∂δ

∣∣∣∣
δ=0

, (30)

where

∂θ+k
∂δ

∣∣∣∣
δ=0

= − ∂θ−k
∂δ

∣∣∣∣
δ=0

=
−2w cos k

4w2 cos2 k + V 2
0

. (31)

One can obtain using equation (31):

〈ψ+
k (t)|ψ−

k (t)〉 = cos
(
E+

k t− E−
k t

)
cos(2γ)

+ sin
(
E+

k t− E−
k t

)
sin(2γ)

×
(

sin 2θk + 2 cos 2θk δ
∂θ+k
∂δ

∣∣∣∣
δ=0

)

− i sin
(
E+

k t− E−
k t

)
cos(2φ)

×
(

cos 2θk + 2 sin 2θk δ
∂θ−k
∂δ

∣∣∣∣
δ=0

)
,

(32)

where γ = δτ(1 + V0α)/2 and φ = V0τ/2.
The maximum contribution to equation (32) comes

from the modes close to the critical mode k = π/2. We
assume small τ (τ � 1) so that δτ → 0 and use the fact
that ln(1 − x) ∼ −x; the decoherence factor in the early
time limit gets reduced to the form

ln(|Dk(t)|2) = −δ2t2 4V 2
0

4w2k′2 + V 2
0

(
1 + 4τ2w2k′2

)
, (33)

where k′ = π/2 − k. Using equations (33) and (29) and
retaining terms up to the leading orders in δ and τ , we get

lnD(t) =

[
−Lδ2t2

2π

{
2V0

w
tan−1

(
2πw
V0

) (
1 − V 2

0 τ
2
)

+ 4πV 2
0 τ

2

}]
. (34)

Equation (34) is plotted in Figure 11 which shows a
Gaussian fall in time of the decoherence factor in the early
time limit; this Gaussian fall is the expected behavior in
the vicinity of a QCP [57].

The scaling of the logarithm of the decoherence fac-
tor with V0 near the QCP (V0 = 0) is analyzed in the
following way; D(t) shows a Gaussian fall in time and
is of the form D(t) ∼ e−V λ

0 t2 . We define a quantity
A(V0) = − logD(t) = V λ

0 t
2 and plot logA(V0) versus

logV0 for a fixed t (see Fig. 12). We obtain a straight
line whose slope gives us λ as logA(V0) = λ logV0 for
fixed t. We find λ = 1 which implies A ∼ V0. On the other
hand, when V0 exceed a threshold value (=2πw), one can
expand the tan−1 term in equation (34) and show that

Fig. 11. (a) Gaussian fall of D(t) following a HRZ quench
shown with time. The different lines correspond to different val-
ues of V0. Increasing V0 makes the decoherence fall faster. The
range of V0 covered in the plot is from 1 (blue) to 50 (black).
For V0 > 2πw, D(t) is approximately independent of V0 which
is reflected by the bunching up of the curves for different V0

for higher values. (b) The similar nature is observed for D(t)
in the sudden quench case (τ = 0).

Fig. 12. Numerically obtained scaling (at fixed t): log D ∼ V0.
It can be seen that the curves for different values of τ coincide
with each other highlighting the weak dependence of D(t) on τ .
Inset shows the variation of the decoherence factor of the qubit
at a fixed t with V0.

D(t) is approximately independent of V0. Moreover, Fig-
ure 11 also shows that logD(t) depends very weakly on τ
for τ � 1, which is further illustrated in Figure 12 where
we show that curves for different values of τ fall on top of
each other.

5.2 Decoherence in the sudden quench limit

The time evolution of decoherence factor can be derived
exactly from the overlap of the initial wave function and
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the time-evolved version of the final wave function in the
sudden quench (τ = 0) limit of the HRZ scheme as shown
below. In this limit, the onsite the potential is V = 0 for
t < 0 and it is abruptly changed to V0 + δ (or V0 − δ
depending on the initial state of the qubit) at t = 0. The
ground state of the HCB system at t = 0 is |ψ(0)〉 = |k〉,
which can be written with the Bogoliubov parameters as

|k〉 = cos θ±k |g±(0)〉 − sin θ±k |e±(0)〉. (35)

Since the ground state and the excited state evolve in time
with the corresponding eigenenergies, the wave function
for t > 0 is simply given by

|ψ±
k (t)〉 = cos θ±k e

iE±
k

t|g±(0)〉 − sin θ±k e
−iE±

k
t|e±(0)〉.

(36)
Expressing |g±(0)〉 and |e±(0)〉 in terms of |k〉 and |k+π〉
using the Bogoliubov transformations, we find

|ψ±
k (t)〉SQ = |k〉 [

cos
(
E±

k t
)

+ i sin
(
E±

k t
)
cos

(
2θ±k

)]

+ |k + π〉 [
i sin

(
E±

k t
)
sin

(
2θ±k

)]
, (37)

so that using equation (37), we find

〈ψ+
k (t)|ψ−

k (t)〉SQ = cos
(
E+

k t− E−
k t

)

− i

[
sin

(
E+

k t− E−
k t

) {
cos 2θk + 2δ sin 2θk

∂θ−k
∂δ

|δ=0

}]
,

(38)

so that we find

log D(t) =
[−Lδ2t2

2π

{
2V0

w
tan−1

(
2πw
V0

)}]
. (39)

Comparing equation (34) with equation (39), we conclude
that the decoherence factor for the HRZ quench in the
small τ limit has additional correction terms of the order
of V 2

0 τ
2. It can also be shown that for V0/2w > ζ(≈ 0.75),

the decay constant dictating the Gaussian decay of the
decoherence factor in the early time limit is greater than
the sudden quench case in comparison to the HRZ case
with small τ .

6 Concluding comments

In this paper, we have studied the QPT and dynamics
of a one dimensional HCB system in the presence of an
onsite potential which alternates in sign from site to site.
We have shown that the ground state quantum fidelity
shows a sharp dip at the QCP (V = 0) indicating that
the system is in the MI phase for any non-zero value of V .
At the same time the fidelity susceptibility is also found
to diverge with the system size in a power-law fashion
dictated by the critical exponent ν (which is unity in the
present case).

Subsequently, we have studied the local von Neumann
entropy density and diagonal entropy of the HCB chain
in MI phase following the HRZ quench starting from the
SF phase. The von Neumann entropy density s scales lin-
early with V0 for small values of V0 (i.e., V0 < 2w) while

it becomes independent of V0 for higher values of V0. On
the other hand, s is found to scale quadratically with τ
throughout. Interestingly, the von Neumann entropy den-
sity is found to be less than its expected value of log 2
in the MI phase. This is a consequence of the fact the
system is quenched to the MI phase from the SF phase
(which is also the QCP) with s = 0 at a finite rate which
leads to defects in the MI phase resulting in a surviving
supercurrent [27] and reduced local entropy.

We have also calculated supercurrent and von
Neumann entropy after a FRZ quench when the HCB
chain is again brought back to the SF phase; interestingly
the reduction in the supercurrent and s both scale iden-
tically as (Voτ)2 in the SF phase emphasizing their close
connection. It should also be reiterated that following the
HRZ quenching there is a surviving supercurrent as well
as a reduction in s in the MI phase. On the other hand,
for the FRZ scheme it is the other way round; one finds
a reduction in supercurrent and a surviving s in the final
SF phase.

Finally, we have analyzed the scaling of the decoher-
ence factor D(t) of a central qubit which is globally con-
nected to the HCB system that is driven from the initial
SF phase to the MI phase following the HRZ quenching
scheme. In the limit of a weak coupling between the qubit
and the environmental HCB system and small τ , a thresh-
old value of the magnitude of the alternating potential
given by V0 = 2πw, is found to exist. Interestingly, the
decoherence factor grows linearly with V0 when V0 < 2πw,
whereas for V0 > 2πw, it turns to be independent of V0.
On the other hand, D(t) is found to depend very weekly
on the quenching parameter τ . This is due to the fact that
the energy spectrum of the Hamiltonian in the MI phase
reached through the HRZ quenching scheme depends only
on V0 and not on τ . In the sudden quench limit (τ → 0)
an exact expression of D(t) is obtained. In the case of a
finite but small τ , the decoherence factor, though qualita-
tively similar to the SQ case, contains additional correc-
tion terms (scaling as (V0τ)2). The more interesting ob-
servation is that we find the existence of a threshold value
of V0(= 1.5w), above which there is a faster early time de-
cay of the decoherence factor of the HRZ case for small τ
in comparison to the sudden quenching case. Therefore,
above this threshold there is less mixing in the quantum
state of the qubit in the sudden quench case as compared
to that of the HRZ case.

A.D. acknowledges CSIR, New Delhi for partial support
through a project.
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Esslinger, Phys. Rev. Lett. 87, 160405 (2001)

2. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80,
885 (2008)

3. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I.
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