Skip to main content
Log in

Geometry-induced quantum dots on surfaces with Gaussian bumps

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work we investigate the two dimensional electron gas on surfaces showing Gaussian bumps. Due to confinement on two dimensional curved space, a geometry-induced potential appears. For surfaces showing single bumps, the geometrical potential gives rise to a geometry-induced quantum ring, as showed in a previous work. For surfaces with multiples bumps, the charge carries may be trapped around the center of these surfaces, which could gives rise to a geometry-induced quantum dot. Our results can be realized on bilayer graphene sheets and we hope that it would lead to new technics of building quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O. Katanaev, Phys. Uspekhi 48, 675 (2005)

    Article  ADS  Google Scholar 

  2. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  3. B.A. Bernevig, T.A. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  4. M. Bttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983)

    Article  ADS  Google Scholar 

  5. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V.Ya. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Physica E 6, 828 (2000)

    Article  ADS  Google Scholar 

  7. V.Ya. Prinz, D. Grtzmacher, A. Beyer, C. David, B. Ketterer, E. Deccard, in Proceedings of Ninth International Symposium on Nanostructures: Physics and Technology, St. Petersburg, 2001, p. 13

  8. S. Mendach, O. Schumacher, Ch. Heyn, S. Schnll, H. Welsch, W. Hansen, Physica E 23, 274 (2004)

    Article  ADS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  10. C. Furtado, C.A. de Lima Ribeiro, S. Azevedo, Phys. Lett. A 296, 171 (2002)

    Article  ADS  MATH  Google Scholar 

  11. D.V. Bulaev, V.A. Geyler, V.A. Margulis, Physica B 337, 180 (2003)

    Article  ADS  Google Scholar 

  12. D.V. Bulaev, V.A. Margulis, Eur. Phys. J. B 36, 183 (2003)

    Article  ADS  Google Scholar 

  13. A. Lorke, S. Böhm, W. Wegscheider, Superlattice Microstruct. 33, 347 (2003)

    Article  ADS  Google Scholar 

  14. L.I. Magarill, A.V. Chaplik, M.V. Entin, Phys. Uspekhi 48, 953 (2005)

    Article  ADS  Google Scholar 

  15. A.B. Vorobe’v, K.J. Friedland, H. Kostial, R. Hey, U. Jahn, E. Wiebicke, J.S. Yukecheva, V.Y. Prinz, Phys. Rev. E 75, 205309 (2007)

    ADS  Google Scholar 

  16. C. Filgueiras, B.F. Oliveira, Ann. Phys. 523, 898 (2011)

    Article  Google Scholar 

  17. M.J. Bueno, C. Furtado, A.M. de M. Carvalho, Eur. Phys. B 85, 53 (2012)

    Article  ADS  Google Scholar 

  18. K. Kowaslki, J.J. Rembieliński, Ann. Phys. 329, 146 (2013)

    Article  ADS  Google Scholar 

  19. A.A. de Lima, C. Filgueiras, Eur. Phys. J. B 85, 401 (2012)

    Article  ADS  Google Scholar 

  20. Y.N. Joglekar, A. Saxena, Phys. Rev. B 80, 153405 (2009)

    Article  ADS  Google Scholar 

  21. R. Dandoloff, A. Saxena, B. Jensen, Phys. Rev. A 81, 014102 (2010)

    Article  ADS  Google Scholar 

  22. R. Dandoloff, A. Saxena, B. Jensen, Phys. Rev. B 79, 033404 (2009)

    Article  ADS  Google Scholar 

  23. V. Atanasov, A. Saxena, Phys. Rev. B 81, 205409 (2010)

    Article  ADS  Google Scholar 

  24. R.D. Kamien, D.R. Nelson, C.D. Santangelo, V. Vitelli, Phys. Rev. E 80, 051703 (2009)

    Article  ADS  Google Scholar 

  25. R.D. Kamien, Rev. Mod. Phys. 74, 953 (2002)

    Article  ADS  Google Scholar 

  26. V. Atanosov, R. Dandoloff, Phys. Lett. A 371, 118 (2007)

    Article  ADS  Google Scholar 

  27. R.C.T. da Costa, Phys. Rev. A 23, 1982 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Ogawa, K. Fujii, A. Kobushukin, Prog. Theor. Phys. 83, 894 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. N. Ogawa, K. Fujii, N. Chepliko, A. Kobushukin, Prog. Theor. Phys. 85, 1189 (1991)

    Article  ADS  Google Scholar 

  30. M. Ikegami, Y. Nagaoka, Prog. Theor. Phys. 106, 235 (1991)

    Article  Google Scholar 

  31. J. Gravesen, M. Willatzen, L.C. Lew Yan Voon, Phys. Scr. 72, 105 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G. Ferrari, G. Cuoghi, Phys. Rev. Lett. 100, 230403 (2008)

    Article  ADS  Google Scholar 

  33. M.P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall,1976)

  34. W.-C. Tan, J.C. Inkson, Semicond. Sci. Thechnol. 11, 1635 (1996)

    Article  ADS  Google Scholar 

  35. M.A. Reed, Sci. Am. 268, 118 (1993)

    Article  ADS  Google Scholar 

  36. Quantum dots – a variety of new applications, edited by A. Al-Ahmadi (InTech, 2012), DOI: 10.5772/2645

  37. B. Jensen, R. Dandoloff, Phys. Lett. A 375, 448 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. E.-A. Kim, A.H. Castro Neto, Europhys. Lett. 84, 57007 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleverson Filgueiras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, K.V.R.A., de Freitas, C.F. & Filgueiras, C. Geometry-induced quantum dots on surfaces with Gaussian bumps. Eur. Phys. J. B 86, 147 (2013). https://doi.org/10.1140/epjb/e2013-31075-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31075-7

Keywords

Navigation