Skip to main content

Advertisement

Log in

Electron energy spectrum and peculiarities of optical absorption of double-walled carbon nanotubes doped by alkali metals atoms

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Procedure based on the density functional theory is applied for investigation of the band structure, density of electronic states and optical absorption curves for photon energies less than ≊7 eV of double-walled carbon nanotubes both pristine and doped by alkali metals atoms (Li, Na, K) into the space between the walls. It is shown that in pristine double-walled nanotubes capable for doping by atoms Li, Na and K the radial shift of the inner tube relative to the outer one by ≊3%, 9% and 12% of the outer tube diameter, respectively, take place. It is revealed that the doping process of structures by alkali metals atoms leads to (a) the restoring of coaxial double-walled nanotubes symmetry; (b) the change of electronic band structure and conductivity type; (c) the appreciable shift of the chemical potential level to higher energies by ≊0.9–1.1 eV; (d) the changes in the absorbing capacity (two absorption peaks in the energy region less than 1.3 eV appear, while five absorption peaks which are typical for pristine structures, shifted to high-energy region by ≊0.1–0.2 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Nature 388, 255 (1997)

    Article  ADS  Google Scholar 

  2. A.G. Souza Filho, V. Meunier, M. Terrones, B.G. Sumpter, E.B. Barros, F. Villalpando-Páez, J. Mendes Filho, Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M.S. Dresselhaus, Nano Lett. 7, 2383 (2007)

    Article  ADS  Google Scholar 

  3. M. Monthioux, Carbon 40, 1809 (2002)

    Article  Google Scholar 

  4. M. Sendova, E. Flahaut, J. Appl. Phys. 103, 024311 (2008)

    Article  ADS  Google Scholar 

  5. M. Sendova, L. Datas, E. Flahaut, J. Appl. Phys. 105, 094312 (2009)

    Article  ADS  Google Scholar 

  6. S.B. Fagan, R. Mota, R.J. Baierle, A.J.R. da Silva, A. Fazzio, Diamond Rel. Mater. 12, 861 (2003)

    Article  ADS  Google Scholar 

  7. I.O. Maciel, J. Campos-Delgado, E. Cruz-Silva, M.A. Pimenta, B.G. Sumpter, V. Meunier, F. López-Urías, E. Muñoz-Sandoval, H. Terrones, M. Terrones, A. Jorio, Nano Lett. 9, 2267 (2009)

    Article  ADS  Google Scholar 

  8. W.J. Mendes Lima, D.L. Azevedo, S. Guerini, Centr. Eur. J. Phys. 8, 811 (2010)

    Article  ADS  Google Scholar 

  9. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, 2008), p. 720

  10. Y.F. Li, T. Kaneko, R. Hatakeyama, Open J. Microphys. 1, 23 (2011)

    Article  Google Scholar 

  11. M. Kalbác, A.A. Green, M.C. Hersam, L. Kavan, ACS Nano 4, 459 (2010)

    Article  Google Scholar 

  12. Y. Tison, C.E. Giusca, J. Sloan, S.R.P. Silva, ACS Nano 2, 2113 (2008)

    Article  Google Scholar 

  13. T. Hayashi, D. Shimamoto, Y.A. Kim, H. Muramatsu, F. Okino, H. Touhara, T. Shimada, Y. Miyauchi, S. Maruyama, M. Terrones, M.S. Dresselhaus, M. Endo, ACS Nano 2, 485 (2008)

    Article  Google Scholar 

  14. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, ACS Nano 1, 494 (2007)

    Article  Google Scholar 

  15. A.A. Green, M.C. Hersam, ACS Nano 5, 1459 (2011)

    Article  Google Scholar 

  16. M. Kalbác, L. Kavan, M. Zukalová, L. Dunsch, Carbon 42, 2915 (2004)

    Article  Google Scholar 

  17. H. Rauf, T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, V.N. Popov, Phys. Rev. B 74, 235419 (2006)

    Article  ADS  Google Scholar 

  18. A. Rahmani, J.-L. Sauvajol, J. Cambedouzou, C. Benoit, Phys. Rev. B 71, 125402 (2005)

    Article  ADS  Google Scholar 

  19. W. Ren, F. Li, P. Tan, H.-M. Cheng, Phys. Rev. B 73, 115430 (2006)

    Article  ADS  Google Scholar 

  20. Y.A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, M. Endo, M. Terrones, M.S. Dresselhaus, Small 2, 667 (2006)

    Article  Google Scholar 

  21. Y.F. Li, R. Hatakeyama, T. Kaneko, T. Izumida, T. Okada, T. Kato, Appl. Phys. Lett. 89, 093110 (2006)

    Article  ADS  Google Scholar 

  22. K.-Y. Chun, C.J. Lee, J. Phys. Chem. C 112, 4492 (2008)

    Article  Google Scholar 

  23. P.G. Collins, P. Avouris, Scientific American 283, 62 (2000)

    Article  Google Scholar 

  24. S. Okada, A. Oshiyama, Phys. Rev. Lett. 91, 216801 (2003)

    Article  ADS  Google Scholar 

  25. H. Gao, J. Zhao, J. Chem. Phys. 132, 234704 (2010)

    Article  ADS  Google Scholar 

  26. S. Yang, A.N. Parks, S.A. Saba, P.L. Ferguson, J. Liu, Nano Lett. 11, 4405 (2011)

    Article  ADS  Google Scholar 

  27. Y. Yang, X.H. Yan, D. Lu, J.X. Cao, J. Chem. Phys. 131, 214701 (2009)

    Article  ADS  Google Scholar 

  28. P.A. Denis, F. Iribarne, R. Faccio, J. Chem. Phys. 130, 194704 (2009)

    Article  ADS  Google Scholar 

  29. X. Lu, Z. Chen, Chem. Rev. 105, 3643 (2005)

    Article  Google Scholar 

  30. A.J. Du, Z.H. Zhu, C.H. Sun, Y. Chen, G.Q. Lu, S.C. Smith, Chem. Phys. Lett. 468, 257 (2009)

    Article  ADS  Google Scholar 

  31. M. Pudlak, R. Pincak, J. Phys.: Conf. Ser. 248, 012008 (2010)

    Article  ADS  Google Scholar 

  32. R. Moradian, S. Azadi, H. Refii-Tabar, J. Phys.: Condens. Matter 19, 176209 (2007)

    Article  ADS  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51, 1 (2002)

    Article  ADS  Google Scholar 

  34. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd edn. (Wiley-VCH, Weinheim, 2001), p. 293

  35. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004), p. 624

  36. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  37. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. J. Junquera, Ó. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)

    Article  ADS  Google Scholar 

  40. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  41. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiy Ovseevich Litinskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litinskiy, A.O., Kamnev, V.V. Electron energy spectrum and peculiarities of optical absorption of double-walled carbon nanotubes doped by alkali metals atoms. Eur. Phys. J. B 86, 219 (2013). https://doi.org/10.1140/epjb/e2013-31027-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31027-3

Keywords

Navigation