Skip to main content
Log in

Electronic transport of a T-shaped double-quantum-dot system in the Coulomb blockade regime

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We studied the electronic transport properties of a T-shaped double-quantum-dot system in the Coulomb blockade regime when the onsite Coulomb interaction parameters U 1 and U 2 have finite values in both component dots. Our analysis is done in the so-called beyond Hartree-Fock approximation that includes contributions related to both normal and mixed averages of various number-like operators in the system. We provide an analytic formula for the main’s dot Green function in the case of large onsite Coulomb interaction parameters (U 1 = U 2 → ∞), and find that with a good approximation, this limit is realized when the ratio U 1/t = U 2/t ≥ 30, t being the interdot electron tunneling between the two component dots of the structures. In the most general situation of the Coulomb blockade regime (U 1U 2) the system conductivity presents two dips corresponding to the Fano-Kondo effect and the system’s shot noise and electronic current present a series of plateaus that should be visible in experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, K.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003)

    Article  Google Scholar 

  2. J. Kondo, Prog. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  3. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  4. B.R. Bulka, P. Stefanski, Phys. Rev. Lett. 86, 5128 (2001)

    Article  ADS  Google Scholar 

  5. O. Entin-Wohlmana, A. Aharonya, Y. Meir, Phys. Rev. B 71, 035333 (2005)

    Article  ADS  Google Scholar 

  6. S. Sasaki, H. Tamura, T. Akazaki, T. Fujisawa, Phys. Rev. Lett. 103, 266806 (2009)

    Article  ADS  Google Scholar 

  7. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319 (2004)

    Article  ADS  Google Scholar 

  8. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Lacroix, J. Phys. F 11, 2389 (1981)

    Article  ADS  Google Scholar 

  10. A.P. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  11. R. Aguado, D.C. Langreth, Phys. Rev. Lett. 85, 1946 (2000)

    Article  ADS  Google Scholar 

  12. N.S. Wingreen, Y. Meir, Phys. Rev. B 49, 11040 (1994)

    Article  ADS  Google Scholar 

  13. P.S. Cornaglia, D.R. Grempel, Phys. Rev. B 71, 075305 (2005)

    Article  ADS  Google Scholar 

  14. R. van Roermund, S.-Y. Shiau, M. Lavagna, Phys. Rev. B 81, 165115 (2010)

    Article  ADS  Google Scholar 

  15. Natalya A. Zimbovskaya, Phys. Rev. B 78, 035331 (2008)

    Article  ADS  Google Scholar 

  16. R. Swirkowicz, J. Barnas, M. Wilczynski, Phys. Rev. B 68, 195318 (2003)

    Article  ADS  Google Scholar 

  17. A. Kaminski, Y.V. Nazarov, L.I. Glazman, Phys. Rev. B 62, 8154 (2000)

    Article  ADS  Google Scholar 

  18. P. Coleman, C. Hooley, O. Parcollet, Phys. Rev. Lett 86, 4088 (2001)

    Article  ADS  Google Scholar 

  19. O. Parcollet, C. Hooley, Phys. Rev. B 66, 085315 (2002)

    Article  ADS  Google Scholar 

  20. J. Paaske, A. Rosch, J. Kroha, P. Wolfle, Phys. Rev. B 70, 155301 (2004)

    Article  ADS  Google Scholar 

  21. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  22. R. Zitko, J. Bonca, Phys. Rev. B 73, 035332 (2006)

    Article  ADS  Google Scholar 

  23. J.E. Han, R.J. Heary, Phys. Rev. Lett. 99, 236808 (2007)

    Article  ADS  Google Scholar 

  24. R. Zitko, Phys. Rev. B 81, 115316 (2010)

    Article  ADS  Google Scholar 

  25. B.H. Wu, J.C. Cao, K.-H. Ahn, Phys. Rev. B 72, 165313 (2005)

    Article  ADS  Google Scholar 

  26. B.H. Wu, Kang-Hun Ahn, Physica E 34, 464 (2006)

    Article  ADS  Google Scholar 

  27. A.D. Guclu, Q.F. Sun, H. Guo, Phys. Rev. B 68, 245323 (2003)

    Article  ADS  Google Scholar 

  28. K. Brown, M. Crisan, I. Tifrea, J. Phys.: Condens. Matter, 21, 215604 (2009)

    Article  ADS  Google Scholar 

  29. A.C. Hewson, Phys. Rev. 144, 420 (1966)

    Article  ADS  Google Scholar 

  30. C.-H. Chung, G. Zarand, P. Wolfle, Phys. Rev. B 77, 035120 (2008)

    Article  ADS  Google Scholar 

  31. I. Tifrea, G. Pal, M. Crisan, Physica E 43, 1887 (2011)

    Article  ADS  Google Scholar 

  32. P.C. Martin, J. Swinger, Phys. Rev. 115, 1342 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960) [Usp. Fiz. Nauk 71, 71 (1960)]

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Lopez, R. Aguado, G. Platero, Phys. Rev. B 69, 235305 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Tifrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tifrea, I., Crisan, M., Pal, G. et al. Electronic transport of a T-shaped double-quantum-dot system in the Coulomb blockade regime. Eur. Phys. J. B 86, 102 (2013). https://doi.org/10.1140/epjb/e2013-30567-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30567-8

Keywords

Navigation