Skip to main content
Log in

Kapitza-Landau time window for a periodically driven system with friction: a system-bath Hamiltonian approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We analyze microscopically the classical dynamics of a Brownian particle moving through a damping medium in a confined potential in the presence of random impulses due to the surrounding medium, which is further subjected to a space dependent, high-frequency time-periodic force (with frequency ω). By invoking a systematic separation of time scales using the inverse of driving frequency as the small parameter, starting from a time-dependent system-reservoir model, we derive an effective system-reservoir Hamiltonian (H eff) which does not include explicit time-dependence. H eff yields an effective Langevin description of the system governed by a time-independent effective potential. Here, we want to generalize Kapitza’s treatment for handling time dependent system within the system-reservoir frame. This work may be relevant for trapping of a classical particle with friction by introducing an external rapid time periodic potential. In our present formulation, different species of particles envisage different minima associated with the effective potential, and this is reminiscent of the fact that the effective potential bears explicit information of those parameters that specify the particles. This aspect can be suitably exploited to segregate different species of Brownian particles (that were initially mixed) with the aid of an appropriate driving by a space-dependent periodic force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lindenberg, B.J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems (VCH, New York, 1990)

  2. R. Kubo, M. Toda, N. Hashitsume, N. Saito, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, Berlin, 1985)

  3. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999)

  4. H. Risken, The FokkerPlanck Equation: Method of Solution and Applications (Springer, New York, 1989)

  5. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  6. P. Hänggi, G.L. Ingold, Chaos 15, 026105 (2005) and references therein

    Article  MathSciNet  ADS  Google Scholar 

  7. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  8. W. Paul, M. Raether, Z. Phys. 140, 262 (1955)

    Article  ADS  Google Scholar 

  9. R. Di Leonardo, G. Ruocco, J. Leach, M.J. Padgett, A.J. Wright, J.M. Girkin, D.R. Burnham, D. McGloin, Phys. Rev. Lett. 99, 010601 (2007)

    Article  Google Scholar 

  10. V.V. Balandin, M.D. Dyachkov, E.N. Shapshnikova, Particle Accelators 35, 1 (1991)

    Google Scholar 

  11. R. Cappi, R. Garoby, E.N. Shaposhnikova, CERN, Report No. CERN/PS 92-40 (RF), Geneva, Switzerland, 1992

  12. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

  13. A.J. Lichtenberg, M.A. Liebermann, Regular and Stochastic Motion (Springer-Verlag, New York, 1983)

  14. J. Carr, Applications of Centre Manifold Theory (Applied Mathematical Sciences) (Springer-Verlag, New York, 1981)

  15. F. Marchesoni, P. Grigolini, Physica A 121, 269 (1983)

    Article  ADS  Google Scholar 

  16. H. Haken, Synergetics (Springer, Berlin, 1978), p. 158

  17. I.I. Bleckman, Vibrational Mechanics (World Scientific, Singapore, 2000)

  18. M. Borromeo, F. Marchesoni, Europhys. Lett. 72, 362 (2005)

    Article  ADS  Google Scholar 

  19. M. Borromeo, F. Marchesoni, Phys. Rev. Lett. 99, 150605 (2007)

    Article  ADS  Google Scholar 

  20. J. Casado-Pascual, D. Cubero, J.P. Baltanás, Europhys. Lett. 77, 50004 (2007)

    Article  ADS  Google Scholar 

  21. P.L. Kapitza, Zh. Eksp. Teor. Fiz. 21, 588 (1951)

    Google Scholar 

  22. P.L. Kapitza, Usp. Fiz. Nauk. 44, 7, both papers are reprinted in Collected Papers of P.L. Kapitza, edited by D. Ter Haar (Pergamon, New York, 1986), Vol. 3

  23. L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1976)

  24. I.C. Percival, D. Richards, Introduction to Dynamics (Cambridge University Press, London, 1982)

  25. S. Rahav, I. Gilary, S. Fishman, Phys. Rev. Lett. 91, 110404 (2003)

    Article  ADS  Google Scholar 

  26. S. Rahav, I. Gilary, S. Fishman, Phys. Rev. A 68, 013820 (2003)

    Article  ADS  Google Scholar 

  27. S. Rahav, I. Gilary, S. Fishman, Phys. Rev. E 71, 036210 (2005)

    Article  ADS  Google Scholar 

  28. T.P. Grozdanov, M.J. Raković, Phys. Rev. A 38, 1739 (1988)

    Article  ADS  Google Scholar 

  29. S.B. Dutta, M. Barma, Phys. Rev. E 67, 061111 (2003)

    Article  ADS  Google Scholar 

  30. M. Bandyopadhyay, M. Barma, J. Stat. Mech. P07018 (2009), doi: 10.1088/1742-5468/2009/07/P07018

  31. R.J. Cook, D.G. Shankland, A.L. Wells, Phys. Rev. A 31, 564 (1985)

    Article  ADS  Google Scholar 

  32. V.E. Shapiro, V.M. Loginov, Phys. Lett. A 71, 287 (1979)

    Article  Google Scholar 

  33. P.S. Landa, A.A. Zaikin, Phys. Rev. E 54, 3535 (1996)

    Article  ADS  Google Scholar 

  34. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1988) and references therein

    Article  ADS  Google Scholar 

  35. P. Jung, Phys. Rep. 234, 175 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  36. S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Europhys. Lett. 76, 1001 (2006)

    Article  ADS  Google Scholar 

  37. S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Phys. Rev. B 75, 184432 (2007)

    Article  ADS  Google Scholar 

  38. S.I. Denisov, A.Yu Polyakov, T.V. Lyutyy, Phys. Rev. B 84, 174410 (2011)

    Article  ADS  Google Scholar 

  39. C. Kim, P. Talkner, E.K. Lee, P. Hänggi, Chem. Phys. 70, 277 (2010)

    Article  ADS  Google Scholar 

  40. A. Shit, S. Chattopadhyay, J. Ray Chaudhuri, Phys. Rev. E 83, 060101(R) (2011)

    MathSciNet  ADS  Google Scholar 

  41. G. Floquet, Annales Scientifiques de l’École Normale Supérieure, Sér. 12, 47 (1883)

    MathSciNet  MATH  Google Scholar 

  42. A. Shit, S. Chattopadhyay, J. Ray Chaudhuri, Eur. Phys. Lett. 97, 40006 (2012)

    Article  ADS  Google Scholar 

  43. R. Zwanzig, Nonequilibrium Statistical Mechanics, 1st edn. (Oxford University Press, Oxford, 2001)

  44. P.F. Bagwell, R.K. Lake, Phys. Rev. B 46, 15329 (1992)

    Article  ADS  Google Scholar 

  45. M. Wagner, Phys. Stat. Sol. 204, 382 (1997)

    Article  ADS  Google Scholar 

  46. A. Shit, S. Chattopadhyay, J. Ray Chaudhuri, J. Chem. Phys. 136, 234506 (2012)

    Article  ADS  Google Scholar 

  47. M. Borromeo, F. Marchesoni, Europhys. Lett. 68, 783 (2004)

    Article  ADS  Google Scholar 

  48. S. Savel'ev, F. Marchesoni, F. Nori, Phys. Rev. E 70, 061107 (2004)

    Article  ADS  Google Scholar 

  49. S. Savel'ev, F. Nori, Nature Mater. 1, 179 (2002)

    Article  ADS  Google Scholar 

  50. D. Cole et al., Nature Mater. 5, 305 (2006)

    Article  ADS  Google Scholar 

  51. P. Ghosh, S. Chattopadhyay, J. Ray Chaudhuri, J. Phys. Chem. B 114, 1368 (2010)

    Article  Google Scholar 

  52. P. Reimann, P. Hänggi, Appl. Phys. A 75, 169 (2002)

    Article  ADS  Google Scholar 

  53. R.D. Astumian, P. Hänggi, Phys. Today 55 (11), 33 (2002)

    Article  Google Scholar 

  54. L. Machura, M. Kostur, P. Talkner, J. Łuczka, P. Hänggi, Phys. Rev. E 73, 031105 (2006)

    Article  ADS  Google Scholar 

  55. S. Bhattacharya, S.K. Banik, S. Chattopadhyay, J. Ray Chaudhuri, J. Math. Phys. 49, 063302 (2008)

    Article  MathSciNet  Google Scholar 

  56. P. Ghosh, A. Shit, S. Chattopadhyay, J. Ray Chaudhuri, Phys. Rev. E 81, 061112 (2010)

    Article  ADS  Google Scholar 

  57. C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)

    Article  ADS  Google Scholar 

  58. C. Van den Broeck, J.M.R. Parrondo, R. Toral, R. Kawai, Phys. Rev. E 55, 4084 (1997)

    Article  ADS  Google Scholar 

  59. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  60. G. Schön, A.D. Zaikin, Phys. Rep. 198, 2378 (1990)

    Article  Google Scholar 

  61. P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. 14, 51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. D. A. Doyle et al., Science 280, 69 (1998)

    Article  ADS  Google Scholar 

  63. B. Alberts et al., Molecular Biology of the Cell (Garland, New York, 1994)

  64. A. Tonomura, Rev. Mod. Phys. 59, 639 (1987)

    Article  ADS  Google Scholar 

  65. J.F. Wambaugh et al., Phys. Rev. Lett. 83, 5106 (1999)

    Article  ADS  Google Scholar 

  66. S. Savelev et al., Phys. Rev. B 71, 214303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  67. Q.H. Wei, C. Bechinger, P. Leiderer, Science 287, 625 (2000)

    Article  ADS  Google Scholar 

  68. C. Lutz, M. Kollmann, C. Bechinger, Phys. Rev. Lett. 93, 026001 (2004)

    Article  ADS  Google Scholar 

  69. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, New York, 1998)

  70. R. Gommers et al., Phys. Rev. Lett. 96, 240604 (2006)

    Article  ADS  Google Scholar 

  71. R. Gommers et al., Phys. Rev. Lett. 95, 073003 (2005)

    Article  ADS  Google Scholar 

  72. R. Gommers et al., Phys. Rev. Lett. 94, 143001 (2005).

    Article  ADS  Google Scholar 

  73. Z. Siwy, A. Fulinski, Phys. Rev. Lett. 89, 198103 (2002)

    Article  ADS  Google Scholar 

  74. S. Matthias, F. Muller, Nature 424, 53 (2003)

    Article  ADS  Google Scholar 

  75. J. Kärger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudip Chattopadhyay or Jyotipratim Ray Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shit, A., Chattopadhyay, S. & Chaudhuri, J. Kapitza-Landau time window for a periodically driven system with friction: a system-bath Hamiltonian approach. Eur. Phys. J. B 86, 23 (2013). https://doi.org/10.1140/epjb/e2012-30852-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30852-0

Keywords

Navigation