Skip to main content
Log in

The role of disorder in the domain wall dynamics of magnetic nanostrips

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the role of the disorder in the dynamics of the domain walls (DW) in nanostrips with in-plane magnetization. In contrast with previous works where the disorder is due to edge roughness, we consider the role of a random distribution of voids, thus simulating local changes of the magnetization saturation value. By making use of the high-speed computational capability of GPUs, and an ad hoc micromagnetic code, we compute the speed of DWs under both applied fields (up to 15 mT), and spin-polarized currents (up to 30 A/μm2), for four different void densities. Field and currents are applied for 20 ns. We also consider both adiabatic and non-adiabatic spin-torque effects (ξ parameter equal 0 and 0.04, respectively). For all the cases, we repeat the simulation for 50 realizations of the void distributions. No thermal effects are considered. While some results can be understood in the line of the models reported in the literature, some others are much more peculiar. For instance, we expect a lower value of the maximum DW speed. This actually occurs in the field driven case, but with a less dramatic drop at the Walker breakdown, due to the difficulty to nucleate an antivortex DW. When nucleated, it gets easily pinned, thus preventing its retrograde motion typical for disorder-free strips. In the case of current drive with non-adiabatic spin-transfer torque, the Walker breakdown current increases strongly with the void density. This results in an increased value of the maximum speed available. Another important consequence of the disorder is that at low fields/currents the depinning transition regions appear to be more rounded, resembling creep behavior. This can have important consequences in the interpretation of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  2. D. Atkinson, D.S. Eastwood, L.K. Bogart, Appl. Phys. Lett. 92, 022510 (2008)

    Article  ADS  Google Scholar 

  3. J. He, S. Zhang, Appl. Phys. Lett. 90, 142508 (2007)

    Article  ADS  Google Scholar 

  4. T. Ono, Y. Nakatani, Appl. Phys. Express 1, 061301 (2008)

    Article  ADS  Google Scholar 

  5. E. Martinez, L. Torres, L. Lopez-Diaz, Phys. Rev. B 83, 174444 (2011)

    Article  ADS  Google Scholar 

  6. D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier, R.P. Cowburn, Science 296, 2003 (2002)

    Article  ADS  Google Scholar 

  7. P. Xu, K. Xia, C. Gu, L. Tang, H. Yang, J. Li, Nature Nanotechnol. 3, 97 (2008)

    Article  ADS  Google Scholar 

  8. E. Martinez, G. Finocchio, M. Carpentieri, Appl. Phys. Lett. 98, 072507 (2011)

    Article  ADS  Google Scholar 

  9. C.H. Marrows, G. Meier, J. Phys.: Condens. Matter 24, 020301 (2012)

    Article  ADS  Google Scholar 

  10. O. Boulle, G. Malinowski, M. Kläui, Mater. Sci. Eng. R 72, 159 (2011)

    Article  Google Scholar 

  11. G. Durin, S. Zapperi, The Science of Hysteresis: Physical Modeling, Micromagnetics, and Magnetization Dynamics (Academic Press, Amsterdam, 2006), Vol. II, Chap. III “The Barkhausen noise”, pp. 181–267

  12. T. Moore et al., J. Magn. Magn. Mater. 322, 1347 (2009)

    Article  ADS  Google Scholar 

  13. J. Akerman, M. Muñoz, M. Maicas, J.L. Prieto, Phys. Rev. B 82, 064426 (2010)

    Article  ADS  Google Scholar 

  14. M.A. Basith, S. McVitie, D. McGrouther, J.N. Chapman, Appl. Phys. Lett. 100, 232402 (2012)

    Article  ADS  Google Scholar 

  15. Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521 (2003)

    Article  ADS  Google Scholar 

  16. H. Min, R.D. McMichael, M.J. Donahue, J. Miltat, M.D. Stiles, Phys. Rev. Lett. 104, 217201 (2010)

    Article  ADS  Google Scholar 

  17. L. Laurson, A. Mughal, G. Durin, S. Zapperi, IEEE Trans. Magn. 46, 262 (2010)

    Article  ADS  Google Scholar 

  18. L. Laurson, C. Serpico, G. Durin, S. Zapperi, J. Appl. Phys. 109, 07D345 (2011)

    Article  Google Scholar 

  19. B. Van de Wiele, L. Laurson, G. Durin, Phys. Rev. B 86, 144415 (2012)

    Article  ADS  Google Scholar 

  20. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  21. A. Vansteenkiste, B. Van de Wiele, J. Magn. Magn. Mater. 323, 2585 (2011)

    Article  ADS  Google Scholar 

  22. B. Van de Wiele, F. Olyslager, L. Dupre, D. De Zutter, J. Magn. Magn. Mater. 322, 469 (2010)

    Article  ADS  Google Scholar 

  23. S. Lepadatu et al., Phys. Rev. B 81, 020413 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Van de Wiele.

Additional information

Contribution to the Topical Issue “New Trends in Magnetism and Magnetic Materials”, edited by Francesca Casoli, Massimo Solzi and Paola Tiberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Wiele, B., Laurson, L. & Durin, G. The role of disorder in the domain wall dynamics of magnetic nanostrips. Eur. Phys. J. B 86, 86 (2013). https://doi.org/10.1140/epjb/e2012-30674-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30674-0

Keywords

Navigation