Skip to main content
Log in

Structural, elastic, electronic and dynamical properties of Ba2MgWO6 double perovskite under pressure from first principles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ab initio calculations within the framework of density-functional theory employing the local density approximation have been performed to study the structural, elastic, electronic and dynamical properties for cubic double perovskite Ba2MgWO6 under hydrostatic pressure. The calculated ground-state properties and compression curve are in good agreement with the available experimental results. Pressure-induced enhancements of elastic constants, aggregate elastic moduli, elastic wave velocities and Debye temperature are observed, without any softening behaviors. Upon compression, the fundamental indirect energy gap E g Γ−X first increases slightly and then monotonically decreases. A linear-response approach is adopted to derive the full phonon-dispersion curves and phonon density of states. Evolution with pressure of the zone-center phonon frequencies for Raman- and infrared-active modes is analyzed. A pressure-induced soft optically silent T 1g phonon mode is identified near the Γ point, signifying a structural dynamical instability. Our calculated results reveal that, when the pressure is high enough, besides bond shortening, the W-O-Mg bond becomes nonlinear, resulting in octahedral tilting distortion and thus a slight departure from the ideal cubic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Khalyavin, J.P. Han, A.M.R. Senos, P.Q. Mantas, Mater. Sci. Forum 455-456, 30 (2004)

    Article  Google Scholar 

  2. H. Iwakura, H. Einaga, Y. Teraoka, J. Nov. Carbon Res. Sci. 3, 1 (2011)

    Google Scholar 

  3. D.E. Bugaris, J.P. Hodges, A. Huq, H-C. zur Loye, J. Solid State Chem. 184, 2293 (2011)

    Article  ADS  Google Scholar 

  4. D.D. Khalyavin, J.P. Han, A.M.R. Senos, P.Q. Mantas, J. Mater. Res. 18, 2600 (2003)

    Article  ADS  Google Scholar 

  5. G. Madariaga, A. Faik, B. Breczewski, J.M. Igartua, Acta Cryst. B: Struct. Sci. 66, 109 (2010)

    Article  Google Scholar 

  6. M. Gateshki, J.M. Igartua, J. Phys.: Condens. Matter 16, 6639 (2004)

    Article  ADS  Google Scholar 

  7. B. Manoun, J.M. Igartua, M. Gateshki, S.K. Saxena, J. Molecular Struc. 888, 244 (2008)

    Article  ADS  Google Scholar 

  8. B. Manoun, J.M. Igartua, M. Gateshki, S.K. Saxena, J. Phys.: Condens. Matter 16, 8367 (2004)

    Article  ADS  Google Scholar 

  9. S.J. Patwe, S.N. Achary, M.D. Mathews, A.K. Tyagi, J. Alloys Compd. 390, 100 (2005)

    Article  Google Scholar 

  10. S.Z. Tian, J.C. Zhao, C.D. Qiao, X.L. Ji, B.Z. Jiang, Mater. Lett. 60, 2747 (2006)

    Article  Google Scholar 

  11. G. Blasse, A.F. Corsmit, J. Solid State Chem. 6, 513 (1973)

    Article  ADS  Google Scholar 

  12. B. Manoun, J.M. Igartua, P. Lazor, J. Mol. Struc. 971, 18 (2010)

    Article  ADS  Google Scholar 

  13. H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, J. Solid State Chem. 175, 94 (2003)

    Article  ADS  Google Scholar 

  14. J.H.G. Bode, A.B. VanOsterhout, J. Lumin. 10, 237 (1975)

    Article  Google Scholar 

  15. G. Blasse, J. Inorg. Nucl. Chem. 37, 1347 (1975)

    Article  Google Scholar 

  16. K.S. Wallwork, B.J. Kennedy, Q. Zhou, Y. Lee, T. Vogt, J. Solid State Chem. 178, 207 (2005)

    Article  ADS  Google Scholar 

  17. M.W. Lufaso, R.B. Macquart, Y. Lee, T. Vogta, H-C. zur Loye, Chem. Commun. 168, 170 (2006)

    Google Scholar 

  18. S. Meenakshi, V. Vijayakumar, S.N. Achary, A.K. Tyagi, J. Phys. Chem. Solids 72, 609 (2011)

    Article  ADS  Google Scholar 

  19. L.W. Shi, Y.F. Duan, L.X. Qin, Comput. Mater. Sci. 50, 203 (2010)

    Article  Google Scholar 

  20. W. Cochran, Phys. Rev. Lett. 3, 412 (1959)

    Article  ADS  Google Scholar 

  21. W. Cochran, Adv. Phys. 10, 401 (1961)

    Article  ADS  Google Scholar 

  22. M.G. Brik, J. Phys. Chem. Solids 73, 252 (2012)

    Article  ADS  Google Scholar 

  23. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  24. M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  25. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Zeit. für Krist. 220 (5-6) 567 (2005)

    Article  Google Scholar 

  26. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  28. J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Phys. Rev. B 47, 4174 (1993)

    Article  ADS  Google Scholar 

  29. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  30. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)

    Article  ADS  Google Scholar 

  31. S. Baroni, S.D. Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  32. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. G. Madariaga, A. Faik, T. Breczewski, J.M. Tgartua, Acta. Cryst. B. Struct. Sci. 66, 109 (2010)

    Article  Google Scholar 

  34. M. Gateshki, J.M. Igartua, E. Hernández-Bocanegra, J. Phys.: Condens. Matter 15, 6199 (2003)

    Article  ADS  Google Scholar 

  35. L. Louail, D. Maouche, A. Roumili, F.A. Sahraoui, Mater. Lett. 58, 2975 (2004)

    Article  Google Scholar 

  36. R. Hill, Proc. Phys. Soc. Lond. 65, 349 (1952)

    Article  ADS  Google Scholar 

  37. G.V. Sin’ko, N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002)

    Article  ADS  Google Scholar 

  38. S.F. Pugh, Phil. Mag. 45, 823 (1954)

    Google Scholar 

  39. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Naukova, Dumka, Kiev, 1983), p. 60

  40. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  41. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  42. M.E. Fine, L.D. Brown, H.L. Marcus, Scripta Metall. 18, 951 (1984)

    Article  Google Scholar 

  43. Y.L. Li, W.L. Fan, H.G. Sun, X.F. Cheng, P. Li, X. Zhao, J. Appl. Phys. 106, 033704 (2009)

    Article  ADS  Google Scholar 

  44. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman. Spectr. 10, 253 (1981)

    Article  ADS  Google Scholar 

  45. M. Liegeois-Duyckaerts, P. Tarte, Spectrochim. Acta A 30, 1771 (1974)

    Article  ADS  Google Scholar 

  46. H.T. Stokes, D.M. Hatch, B.J. Campbell, ISOTROPY, stokes.byu.edu/isotropy.html.(2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Wu, L., Duan, Y.F. et al. Structural, elastic, electronic and dynamical properties of Ba2MgWO6 double perovskite under pressure from first principles. Eur. Phys. J. B 86, 9 (2013). https://doi.org/10.1140/epjb/e2012-30584-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30584-1

Keywords

Navigation