Skip to main content
Log in

Spin dependent transport behavior in small world networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) combined with the non equilibrium Green’s function formalism (NEGF) is applied to perform spin polarized transport calculations on small world network (SWN) systems consisting of atomic wires. Including the spin property in SWN structures leads to interesting electrical properties. It is revealed that the emerging spin polarization depends mainly on the SWN geometry given by the asymmetric distribution of loops joining the arbitrary atoms on the main chain. The spin-asymmetric behavior which yields the spin polarization is found to be largely determined by those loops which are close to the electrodes. However, spin polarization may vanish for a specific SWN structure due to symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Prinz, Phys. Today 48, 58 (1995)

    Article  Google Scholar 

  2. I. Zutic et al., Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  3. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  4. S.J. Pearton et al., J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  5. V. Dediu et al., Solid State Commun. 122, 181 (2002)

    Article  ADS  Google Scholar 

  6. K. Tsukagoshi et al., Nature 401, 572 (1999)

    Article  ADS  Google Scholar 

  7. B. Zhao et al., Appl. Phys. Lett. 80, 3144 (2002)

    Article  ADS  Google Scholar 

  8. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004)

    Article  ADS  Google Scholar 

  9. J.A. Ascencio et al., Appl. Phys. A: Mater. Sci. Process. A 78, 5 (2004)

    Article  ADS  Google Scholar 

  10. S.V. Zaitsev-Zotov et al., J. Phys.: Condens. Matter 12, L303 (2000)

    Article  ADS  Google Scholar 

  11. S. Caliskan, J. Appl. Phys. 107, 053706 (2010)

    Article  ADS  Google Scholar 

  12. D.J. Watts, S. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  13. R.V. Kulkani, E. Almmas, D. Stroud, Phys. Rev. E 61, 4268 (2000)

    Article  ADS  Google Scholar 

  14. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 6263 (1999)

    Article  MathSciNet  Google Scholar 

  15. C. Zhu, S. Xiong, Phys. Rev. B 62, 14780 (2000)

    Article  ADS  Google Scholar 

  16. S.H. Strogatz, Nature, 410, 268 (2001)

    Article  ADS  Google Scholar 

  17. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. H. Van Houten, C. Beenakker, Phys. Today 49, 22 (1996)

    Article  Google Scholar 

  19. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  20. Y. Imry, R. Landauer, Rev. Mod. Phys. 71, S306 (1999)

    Article  Google Scholar 

  21. M. Brandbyge et al., Phys. Rev. B 52, 8499 (1995)

    Article  ADS  Google Scholar 

  22. A.G.M. Jansen, A.P. Van Gelder, P. Wyder, J. Phys. C 13, 6073 (1980)

    Article  ADS  Google Scholar 

  23. S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University, Cambridge, 1995)

  24. T. Dittrich et al., Quantum Transport and Dissipation (Wiley, New York, 1998)

  25. A. Szafer, A.D. Stone, Phys. Rev. Lett. 62, 300 (1989)

    Article  ADS  Google Scholar 

  26. C.S. Chu, R.S. Sorbello, Phys. Rev. B 40, 5941 (1989)

    Article  ADS  Google Scholar 

  27. P.F. Bagwell, Phys. Rev. B 41, 10354 (1990)

    Article  ADS  Google Scholar 

  28. E. Tekman, S. Ciraci, Phys. Rev. B 43, 7145 (1991)

    Article  ADS  Google Scholar 

  29. H. Tamura, T. Ando, Phys. Rev. B 44, 1792 (1991)

    Article  ADS  Google Scholar 

  30. E. Granot, Phys. Rev. B 60, 10664 (1999)

    Article  ADS  Google Scholar 

  31. C.S. Kim, A.M. Satanin, Y.S. Joe, R.M. Cosby, Phys. Rev. B 60, 10962 (1999)

    Article  ADS  Google Scholar 

  32. V. Vargiamidis, O. Valassiades, J. Appl. Phys. 92, 302 (2002)

    Article  ADS  Google Scholar 

  33. J.A. Sánchez-Gil et al., Phys. Rev. B 59, 5915 (1999)

    Article  ADS  Google Scholar 

  34. J. Bettini et al., Nat. Nanotechnol. 1, 182 (2006)

    Article  ADS  Google Scholar 

  35. T. Matsuda, T. Kizuka, Jpn J. Appl. Phys., Part 2 45, L1337 (2006)

    Article  Google Scholar 

  36. M. NG et al., Nano Lett. 8, 3662 (2008)

    Article  ADS  Google Scholar 

  37. Y.D. Guo et al., J. Appl. Phys. 108, 104309 (2010)

    Article  ADS  Google Scholar 

  38. R.H.M. Smit et al., Phys. Rev. Lett. 91, 076805 (2003)

    Article  ADS  Google Scholar 

  39. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  40. A. Grigoriev et al., Phys. Rev. Lett. 97, 236807 (2006)

    Article  ADS  Google Scholar 

  41. A. Delin, E. Tosatti, Phys. Rev. B 68, 144434 (2003)

    Article  ADS  Google Scholar 

  42. V.S. Stepanyuk et al., Phys. Rev. B 69, 033302 (2004)

    Article  ADS  Google Scholar 

  43. Y. Gefen, D.J. Thouless, Y. Imry, Phys. Rev. B 28, 6677 (1983)

    Article  ADS  Google Scholar 

  44. D.S. Callaway et al., Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  45. R. Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  46. S. Caliskan et al., J. Appl. Phys. 102, 013707 (2007)

    Article  ADS  Google Scholar 

  47. M. Brandbyge et al., Phys. Rev. B 65, 165401 (2002), Atomistix ToolKit, QuantumWise A/S (www.quantumwise.com)

    Article  ADS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  49. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  50. B. Bollobas, Random Graphs (Cambridge University, Cambridge, 2001)

  51. M.A. Novotny, S.M. Wheeler, Braz. J. Phys. 34, 395 (2004)

    Article  Google Scholar 

  52. J.A. Yancey, M.A. Novotny, S.R. Gwaltney, Int. J. Mod. Phys. C, 20, 1345 (2009)

    Article  ADS  Google Scholar 

  53. M.A. Novotny et al., J. Appl. Phys, 97, 10B309 (2005)

    Article  Google Scholar 

  54. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  55. K.Yu. Bliokh et al., J. Sci. Eng. 1, 91 (2003)

    Google Scholar 

  56. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  57. P.A. Lee, Phys. Rev. Lett. 53, 2043 (1984)

    ADS  Google Scholar 

  58. M.Y. Azbel, Solid State Commun. 45, 527 (1983)

    Article  ADS  Google Scholar 

  59. H. Sahin, R.T. Senger, Phys. Rev. B 78, 205423 (2008)

    Article  ADS  Google Scholar 

  60. S. Ke et al., J. Chem. Phys. 123, 114701 (2005)

    Article  ADS  Google Scholar 

  61. J.P. Perdew, Y. Wang, Phys. Rev. B 33, 8800 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Caliskan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caliskan, S., Canturk, M. Spin dependent transport behavior in small world networks. Eur. Phys. J. B 85, 327 (2012). https://doi.org/10.1140/epjb/e2012-30253-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30253-5

Keywords

Navigation