Skip to main content
Log in

Thermoelectric effects of a laterally coupled double-quantum-dot structure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the thermoelectric properties of a laterally coupled double-quantum-dot structure. For this structure, a one-dimensional quantum dot (QD) chain between two leads forms a main channel for electron transmission, and each QD in the chain laterally couples to an additional QD. It is found that at low temperature, similar insulating bands emerge around the antiresonant points in the electronic and thermal conductance spectra. And, the edges of the insulating bands become steep rapidly with the increase of QD numbers. What’s interesting is that striking thermoelectric effect exists in the energy region where the insulating bands appear. Furthermore, with the formation of the insulation bands, the magnitude of the Seebeck coefficient becomes stable, whereas the thermoelectric efficiency is increased. By plotting the Lorentz number spectrum, we observe that in such a structure, the Lorentz number strongly violates the Wiedemann-Franz law in the insulating-band region with its maximum at the point of antiresonance. When weak intradot Coulomb interaction is taken into account, the weakened thermoelectric effect can still be improved with the increase of QD numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Giazotto, T.T. Heikkilā, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  2. M.F. Ódwyer, R.A. Lewis, C. Zhang, T.E. Humphrey, Phys. Rev. B 72, 205330 (2005)

    Article  ADS  Google Scholar 

  3. Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  4. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)

    Article  Google Scholar 

  5. G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Amsterdam, 2000)

  6. P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  7. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  8. Z. Wang, J.A. Carter, A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, D.D. Dlott, Science 317, 787 (2007)

    Article  ADS  Google Scholar 

  9. P. Murphy, S. Mukerjee, J. Moore, Phys. Rev. B 78, 161406(R) (2008)

    ADS  Google Scholar 

  10. O. Karlström, H. Linke, G. Karlström, A. Wacker, Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  11. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  12. A.S. Dzurak, C.G. Smith, C.H.W. Barnes, M. Pepper, L. Martin-Moreno, C.T. Liang, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 55, R10197 (1997)

    Article  ADS  Google Scholar 

  13. A.A.M. Staring, L.W. Molenkamp, B.W. Alpenaar, H. van Houten, O.J.A. Buyk, M.A.A. Mabesoone, C.W.J. Beenakker, C.T. Foxon, Europhys. Lett. 22, 57 (1993)

    Article  ADS  Google Scholar 

  14. L.W. Molenkamp, A.A.M. Staring, B.W. Alphenaar, H. van Houten, C.W.J. Beenakker, Semicond. Sci. Technol. 9, 903 (1994)

    Article  ADS  Google Scholar 

  15. C.W.J. Beenakker, A.A.M. Staring, Phys. Rev. B 46, 9667 (1992)

    Article  ADS  Google Scholar 

  16. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  17. Y.M. Lin, M.S. Dresselhaus, Phys. Rev. B 68, 075304 (2003)

    Article  ADS  Google Scholar 

  18. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)

    Article  ADS  Google Scholar 

  19. R. Scheibner, H. Buchmann, D. Reuter, M.N. Kiselev, L.W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005)

    Article  ADS  Google Scholar 

  20. D. Boese, R. Fazio, Europhys. Lett. 56, 576 (2001)

    Article  ADS  Google Scholar 

  21. X. Zianni, Phys. Rev. B 75, 045344 (2007)

    Article  ADS  Google Scholar 

  22. B. Dong, X.L. Lei, J. Phys.: Condens. Matter 14, 11747 (2002)

    Article  ADS  Google Scholar 

  23. M. Krawiec, K.I. Wysokiński, Phys. Rev. B 73, 075307 (2006)

    Article  ADS  Google Scholar 

  24. B. Kubala, J. Konig, Phys. Rev. B 73, 195316 (2006)

    Article  ADS  Google Scholar 

  25. B. Kubala, J. Konig, J. Pekola, Phys. Rev. Lett. 100, 066801 (2008)

    Article  ADS  Google Scholar 

  26. T.A. Costi, V. Zlatic, Phys. Rev. B 81, 235127 (2010)

    Article  ADS  Google Scholar 

  27. J. Liu, Q.F. Sun, X.C. Xie, Phys. Rev. B 81, 245323 (2010)

    Article  ADS  Google Scholar 

  28. M. Tsaousidou, G.P. Triberis, J. Phys.: Condens. Matter 22, 355304 (2010)

    Article  Google Scholar 

  29. Y. Dubi, M. Di Ventra, Phys. Rev. B 79, 081302 (2009)

    Article  ADS  Google Scholar 

  30. R. Śirkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)

    Article  ADS  Google Scholar 

  31. D.M.-T. Kuo, Yia-Chung Chang, Phys. Rev. Lett. 95, 066801 (2005)

    Article  Google Scholar 

  32. G.A. Lara, P.A. Orellana, E.V. Anda, Phys. Rev. B 78, 045323 (2008)

    Article  ADS  Google Scholar 

  33. B. Dong, X.L. Lei, N.J.M. Horing, Phys. Rev. B 77, 085309 (2008)

    Article  ADS  Google Scholar 

  34. R. Leturcq, L. Schmid, K. Ensslin, Y. Meir, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 95, 126603 (2005)

    Article  ADS  Google Scholar 

  35. T. Kuzmenko, K. Kikoin, Y. Avishai, Phys. Rev. Lett. 96, 046601 (2006)

    Article  ADS  Google Scholar 

  36. J.C. Chen, A.M. Chang, M.R. Melloch, Phys. Rev. Lett. 92, 176801 (2004)

    Article  ADS  Google Scholar 

  37. K.-W. Chen, C.-R. Chang, Phys. Rev. B 78, 235319 (2008)

    Article  ADS  Google Scholar 

  38. Z. Jiang, Q.-Z. Han, Phys. Rev. B 78, 035307 (2008)

    Article  ADS  Google Scholar 

  39. K. Bao, Y. Zheng, Phys. Rev. B 73, 045306 (2005)

    Article  ADS  Google Scholar 

  40. D.M.-T. Kuo, S.-Y. Shiau, Y. Chang, Phys. Rev. B 84, 245303 (2011)

    Article  ADS  Google Scholar 

  41. T.-S. Kim, S. Hershfield, Phys. Rev. Lett. 88, 136601 (2002)

    Article  ADS  Google Scholar 

  42. Y.M. Blanter, C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. B 55, 4069 (1997)

    Article  ADS  Google Scholar 

  43. R. Franco, J. Silva-Valencia, M.S. Figueira, J. Appl. Phys. 103, 07B726 (2008)

    Article  Google Scholar 

  44. M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011)

    Article  ADS  Google Scholar 

  45. Y.S. Liu, X.F. Yang, J. Appl. Phys. 108, 023710 (2010)

    Article  ADS  Google Scholar 

  46. O. Karlström, H. Linke, G. Karlström, A. Wacker, Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  47. P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  48. Y.-S. Liu, D.-B. Zhang, X.-F. Yang, J.-F. Feng, Nanotechnology 22, 225201 (2011)

    Article  ADS  Google Scholar 

  49. M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 95, 066801 (2005)

    Article  ADS  Google Scholar 

  50. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319 (2003)

    Article  ADS  Google Scholar 

  51. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  52. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  53. C. Lacroix, J. Phys. F: Met. Phys. 11, 2389 (1981)

    Article  ADS  Google Scholar 

  54. W.-R. Lee, J.U. Kim, H.-S. Sim, Phys. Rev. B 77, 033305 (2008)

    Article  ADS  Google Scholar 

  55. R. Kirkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2010)

    Article  Google Scholar 

  56. F. Chi, J. Zheng, L.-L. Sun, J. Appl. Phys. 104, 043707 (2008)

    Article  ADS  Google Scholar 

  57. K.-W. Chen, C.-R. Chang, Phys. Rev. B 78, 235319 (2008)

    Article  ADS  Google Scholar 

  58. Y. Ying, G. Jin, Appl. Phys. Lett. 96, 093104 (2010)

    Article  ADS  Google Scholar 

  59. W. Gong, Y. Zheng, Y. Liu, T. Lu, Phys. Rev. B 73, 245329 (2006)

    Article  ADS  Google Scholar 

  60. W.J. Gong, C. Jiang, X. Sui, A. Du, J. Phys. Soc. Jpn 81, 104601 (2012)

    Article  Google Scholar 

  61. S. Kiravittaya, A. Rastelli, O.G. Schmidt, Rep. Prog. Phys. 72, 046502 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Gong, W.J. & Zheng, Y.S. Thermoelectric effects of a laterally coupled double-quantum-dot structure. Eur. Phys. J. B 85, 364 (2012). https://doi.org/10.1140/epjb/e2012-30190-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30190-3

Keywords

Navigation