Skip to main content
Log in

Macrospin approximation and quantum effects in models for magnetization reversal

The European Physical Journal B Aims and scope Submit manuscript

Abstract

The thermal activation of magnetization reversal in magnetic nanoparticles is controlled by the anisotropy-energy barrier. Using perturbation theory, exact diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg model with coupling or single-site anisotropy, we study the effects of quantum fluctuations on the height of the energy barrier. Opposed to the classical case, there is no critical anisotropy strength discriminating between reversal via coherent rotation and via nucleation/domain-wall propagation. Quantum fluctuations are seen to lower the barrier depending on the anisotropy strength, dimensionality and system size and shape. In the weak-anisotropy limit, a macrospin model is shown to emerge as the effective low-energy theory where the microscopic spins are tightly aligned due to the ferromagnetic exchange. The calculation provides explicit expressions for the anisotropy parameter of the effective macrospin. We find a reduction of the anisotropy-energy barrier as compared to the classical high spin-s limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009)

    Article  ADS  Google Scholar 

  2. J. Schnack, Lect. Notes Phys. 645, 155 (2004)

    Article  ADS  Google Scholar 

  3. W. Wernsdorfer, Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters, in of Advances in Chemical Physics (Wiley, New York, 2001), vol. 118

  4. S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. Lett. 103, 127202 (2009)

    Article  ADS  Google Scholar 

  5. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. A 240, 599 (1948)

    Article  ADS  MATH  Google Scholar 

  6. L. Néel, Ann. Geophys. 5, 99 (1949)

    Google Scholar 

  7. W.F. Brown, Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, Physik. Zeits. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  9. H. Kachkachi, D.A. Garanin, in Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005), p. 75

  10. D. Hinzke, U. Nowak, Phys. Rev. B 58, 265 (1998)

    Article  ADS  Google Scholar 

  11. M. Bode, O. Pietzsch, A. Kubetzka, R. Wiesendanger, Phys. Rev. Lett. 92, 067201 (2004)

    Article  ADS  Google Scholar 

  12. H.-B. Braun, Phys. Rev. Lett. 71, 3557 (1993)

    Article  ADS  Google Scholar 

  13. H.-B. Braun, Phys. Rev. B 50, 16501 (1994)

    Article  ADS  Google Scholar 

  14. D.D. Awschalom, D.P. DiVincenzo, J.F. Smyth, Science 258, 414 (1992)

    Article  ADS  Google Scholar 

  15. W. Wernsdorfer, R. Sessoli, Science 284, 133 (1999)

    Article  ADS  Google Scholar 

  16. H.A. DeRaedt, A.H. Hams, V.V. Dobrovitski, M. Al-Saqer, M.I. Katsnelson, B.N. Harmon, J. Magn. Mater. 246, 392 (2002)

    Article  ADS  Google Scholar 

  17. D. Roosen, M.R. Wegewijs, W. Hofstetter, Phys. Rev. Lett. 100, 087201 (2008)

    Article  ADS  Google Scholar 

  18. D. Zueco, J.L. García-Palacios, Phys. Rev. B 73, 104448 (2006)

    Article  ADS  Google Scholar 

  19. Y.P. Kalmykov, W.T. Coffey, S.V. Titov, J. Stat. Phys. 131, 969 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. B. Bakar, L.F. Lemmens, Phys. Rev. E 71, 046109 (2005)

    Article  ADS  Google Scholar 

  21. D.A. Garanin, Phys. Rev. B 78, 144413 (2008)

    Article  ADS  Google Scholar 

  22. W. Feller, An introduction to probability theory and its applications (Wiley, New York, 1968), Vol. 1

  23. K. Lanczos, J. Res. Natl. Bur. Stand. 45, 225 (1950)

    MathSciNet  Google Scholar 

  24. H.Q. Lin, J.E. Gubernatis, Comput. Phys. 7, 400 (1993)

    Google Scholar 

  25. C. Kittel, Rev. Mod. Phys. 21, 541 (1949)

    Article  ADS  Google Scholar 

  26. S. Middelhoek, J. Appl. Phys. 34, 1045 (1963)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Potthoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayad, M., Gütersloh, D. & Potthoff, M. Macrospin approximation and quantum effects in models for magnetization reversal. Eur. Phys. J. B 85, 125 (2012). https://doi.org/10.1140/epjb/e2012-20936-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20936-2

Keywords

Navigation