Skip to main content
Log in

Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, three new algorithms are introduced in order to explore long memory in financial time series. They are based on a new concept of fractal dimension of a curve. A mathematical support is provided for each algorithm and its accuracy is tested for different length time series by Monte Carlo simulations. In particular, in the case of short length series, the introduced algorithms perform much better than the classical methods. Finally, an empirical application for some stock market indexes as well as some individual stocks is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Lo, Econometrica 59, 1279 (1991)

    Article  MATH  Google Scholar 

  2. A.W. Lo, A.C. MacKinlay, Long-term memory in stock market prices, in A Non-Random Walk Down Wall Street (Princeton University Press, 1999), Chap. 6

  3. M. Greene, B. Fielitz, J. Financ. Econ. 4, 339 (1977)

    Article  Google Scholar 

  4. J. Hampton, Rescaled range analysis: Approaches for the financial practitioners, Part 3, Neuro Vest Journal 27 (1996)

  5. F. Lillo, J.D. Farmer, Studies in Nonlinear Dynamics and Econometrics 8, 1 (2004)

    Google Scholar 

  6. E. Panas, Appl. Financ. Econ. 11, 395 (2001)

    Article  Google Scholar 

  7. E. Peters, Financ. Anal. J. 48, 32 (1992)

    Article  Google Scholar 

  8. B.B. Mandelbrot, J.R. Wallis, Water Resourc. Res. 5, 967 (1969)

    Article  ADS  Google Scholar 

  9. C.M. Jensen, J. Financ. Econ. 6, 95 (1978)

    Article  Google Scholar 

  10. B.G. Malkiel, J. Econ. Perspect. 17, 59 (2003)

    Article  Google Scholar 

  11. W. Goetsmann, Journal of Business 66, 249 (1993)

    Article  Google Scholar 

  12. E. Peters, Chaos and Order in the Capital Markets: A New View of Cycles, Prices and Market Volatility (John Wiley & Sons Inc., New York, 1996)

  13. R. Weron, Physica A 312, 285 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Ausloos, Physica A 285, 48 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. T. Di Matteo, T. Aste, M. Dacorogna, J. Bank. Financ. 29, 827 (2005)

    Article  Google Scholar 

  16. J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Physica A 295, 441 (2001)

    Article  ADS  MATH  Google Scholar 

  17. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Y. Liu, P. Cizeau, M. Meyer, C. Peng, H. Stanley, Physica A 245, 437 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Ausloos, N. Vandewalle, Ph. Boveroux, A. Minguet, K. Ivanova, Physica A 274, 229 (1999)

    Article  ADS  Google Scholar 

  20. M.A. Sánchez-Granero, J.E. Trinidad Segovia, J. García Pérez, Physica A 387, 5543 (2008)

    Article  ADS  Google Scholar 

  21. E. Bayraktar, H.V. Poor, K.R. Sircar, Int. J. Theor. Appl. Finance 7, 615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.-H. Chen, T. Lux, M. Marchesi, J. Econ. Behav. Organ. 46, 327 (2001)

    Article  Google Scholar 

  23. S. Mercik, K. Weron, Acta Physica Polonica B 34, 3773 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  24. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman & Company, New York, 1982)

  25. C. Brown, L. Liebovitch, Fractal Analysis (SAGE Publications Inc., California, 2010)

  26. C. Bandt, T. Retta, Fund. Math. 141, 257 (1992)

    MathSciNet  MATH  Google Scholar 

  27. F.G. Arenas, M.A. Sánchez-Granero, Rend. Istit. Mat. Univ. Trieste, Suppl. XXX, 21 (1999)

    Google Scholar 

  28. F.G. Arenas, M.A. Sánchez-Granero, A characterization of self-similar symbolic spaces, Mediterr. J. Math., in press, doi: 10.1007/s00009-011-0146-4

  29. M.A. Sánchez-Granero, M. Fernández-Martínez, Fractal dimension for fractal structures, preprint, arXiv:1007.3236v1 [nlin.CD] (2011)

  30. M.A. Sánchez-Granero, Applications of fractal structures, in Proceedings of the Workshop in Applied Topology WiAT’10 (2010), pp. 1–10

  31. K. Falconer, Fractal Geometry, Mathematical Foundations and Applications (John Wiley & Sons Inc., Chichester, 1990)

  32. M. Fernández-Martínez, M.A. Sánchez-Granero, Fractal dimension for fractal structures: A Hausdorff approach, Topol. Appl., in press, doi: 10.1016/j.topol.2011.04.023

  33. B.B. Mandelbrot, Gaussian self-affinity and fractals (Springer-Verlag, New York, 2002)

  34. M. Maejima, Sugaku Expositions 2 1, 103 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Trinidad-Segovia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Granero, M.J., Fernández-Martínez, M. & Trinidad-Segovia, J.E. Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series. Eur. Phys. J. B 85, 86 (2012). https://doi.org/10.1140/epjb/e2012-20803-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20803-2

Keywords

Navigation