Skip to main content
Log in

An ab-initio study of silicon adsorption on metallic surfaces (Au/Ag): Novel perspective to explore chemical bonding

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report a first-principle investigation of the structure and electronic properties of small Si n  (n = 1−6,9) clusters deposited on the Au(111) and Ag(111) surfaces. The calculations were performed using a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of Si atom to be adsorbed on the h.c.p. site of the metal (111) surfaces with strong binding energy. We study monolayer (ML) deposition as well as the cluster deposition on both the surfaces. The clusters introduce interlayer forces in the adsorbate. Based on PDOS (projected density of states) analysis it is found that Si atoms acquire charges from the Au/Ag surface. The binding energies are consistent with the known cohesive energy of Ag and Au silicides. The planar Si n cluster deposition on metal surfaces show that Au provides an adjustable surface with relatively strong Au-Si interaction while Ag-Si relatively weak interaction leading to dimerization of Si. The strong bonding with the surface atoms is a result of p-d hybridization. Some of the 3-D clusters show shape distortions after deposition on metal surfaces. This leads to internal stresses after deposition. A statistical parameter is defined over PDOS. It helps to measure the state delocalization in energy. Implications of the Si-Metal interaction on the initial stages of growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Chang, C.Y. Chen, Li-Jen Chou, L.J. Chen, ACS Nano 3, 3776 (2009)

    Article  Google Scholar 

  2. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Nature Lett. 441, 489 (2006)

    Article  ADS  Google Scholar 

  3. G. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890 (2004)

    Article  Google Scholar 

  4. D.M. Cardamone, G. Kirczenow, Nano Lett. 10, 1158 (2010)

    Article  ADS  Google Scholar 

  5. H. Hakkinen, R.N. Barnett, U. Landman, J. Phys. Chem. B 103, 8814 (1999)

    Article  Google Scholar 

  6. A.D. Remenyuk, N.M. Schmidt, Appl. Surf. Sci. 91, 352 (1995)

    Article  ADS  Google Scholar 

  7. R. Thakur, R.B. Gupta, Ind. Eng. Chem. Res. 44, 3086 (2005)

    Article  Google Scholar 

  8. D.K. Sarkar, S. Dhara, K.G.M. Nair, S. Chowdhury, Nucl. Instrum. Methods Phys. Res. B 168, 215 (2000)

    Article  ADS  Google Scholar 

  9. D.K. Sarkar, S. Dhara, K.G.M. Nair, S. Chowdhury, Nucl. Insrum. Methods Phys. Res. B 170, 413 (2000)

    Article  ADS  Google Scholar 

  10. C.J. McHargue. Int. Meter. Rev. 31, 49 (1986)

    Article  Google Scholar 

  11. O.U. Akturk, M. Tomak, Thin Solid Films 518, 3234 (2010)

    Article  ADS  Google Scholar 

  12. S. Konar, B.C. Gupta, I.P. Batra, Phys. Rev. B 77, 245411 (2008)

    Article  ADS  Google Scholar 

  13. C. Mujumder, Phys. Rev. B 75, 235409 (2007)

    Article  ADS  Google Scholar 

  14. X.F. Lin, K.J. Wan, J. Nogami, Phys. Rev. B 47, 13491 (1993)

    Article  ADS  Google Scholar 

  15. T.W. Lajole, J.J. Ramirez, D.S. Kilin, D.A. Micha, Int. J. Quant. Chem. 110, 3005 (2010)

    Article  Google Scholar 

  16. Z. Paszti, G. Peto, Z.E. Horvath, A. Karacs, L. Guczi, Solid State Commun. 107, 329 (1998)

    Article  ADS  Google Scholar 

  17. L. Zhang, K. Younghoon, S. Hyungjoon, L. Geunseop, J. Phys.: Condens. Matter 19, 486004 (2007)

    Article  Google Scholar 

  18. L. Zhao, A.C.L. Siu, J.A. Petrus, Z. He, K.T. Leung, J. Am. Chem. Soc. 129, 5730 (2007)

    Article  Google Scholar 

  19. G.F. Zhao, L. Zhi, L. Guo, Z. Zeng, J. Chem. Phys. 127, 234705 (2007)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  21. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  22. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  24. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  25. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  26. A.D. Zdetsis, J. Comput. Methods Sci. Eng. 7, 257 (2007)

    Google Scholar 

  27. B.Y. Lin, C.X. Rong, Z.X. Lin, Chin. Phys. Lett. 23, 2281 (2006)

    Article  ADS  Google Scholar 

  28. B.X. Lia, M. Qiub, P.L. Caob, Phys. Lett. A 256, 386 (1999)

    Article  ADS  Google Scholar 

  29. M. Koper, A. Rutger, V. Santeu, J. Electroanal. Chem. 472, 126 (1999)

    Article  Google Scholar 

  30. R. Ferrando, G. Barcaro, A. Fortunelli, Phys. Rev. Lett. 102, 216102 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Ghaisas, S. & Majumder, C. An ab-initio study of silicon adsorption on metallic surfaces (Au/Ag): Novel perspective to explore chemical bonding. Eur. Phys. J. B 85, 227 (2012). https://doi.org/10.1140/epjb/e2012-20591-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20591-7

Keywords

Navigation