Skip to main content
Log in

Controlling the optical spectra of gold nano-islands by changing the aspect ratio and the inter-island distance: theory and experiment

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The extinction spectrum of a dielectric film with periodic array of metallic islands of different shapes and different mutual distances was studied both theoretically and experimentally. It is shown, analytically, numerically and experimentally, that the positions of the surface plasmon resonances depend on the nano-structural details. We propose two ways of controlling plasmon resonance frequency: changing the aspect ratio of the elliptical (or rectangular) islands and changing their mutual distances. A new analytical asymptotic approach for calculating the optical properties of such plasmonic systems is developed. The results of our analytical and numerical studies are in good qualitative agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature (London) 391, 667 (1998)

    Article  ADS  Google Scholar 

  2. C. Genet, T.W. Ebbesen, Nature 445, 39 (2007), and references therein

    Article  ADS  Google Scholar 

  3. V.G. Veselago, Soviet Physics Uspekhi 10, 509 (1968)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  5. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  6. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988)

  7. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004)

    Article  ADS  Google Scholar 

  8. K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)

    Article  ADS  Google Scholar 

  9. H. Cao, A. Nahata, Optic Express 12, 3664 (2004)

    Article  ADS  Google Scholar 

  10. A. Degiron, H.J. Lezec, N. Yamamoto, T.W. Ebbesen, Opt. Commun. 239, 61 (2004)

    Article  ADS  Google Scholar 

  11. M. Sarrazin, J.-P. Vigneron, Opt. Commun. 240, 89 (2004)

    Article  ADS  Google Scholar 

  12. J. Elliott, I.I. Smolyaninov, N.I. Zheludev, A.V. Zayats, Opt. Lett. 29, 1414 (2004)

    Article  ADS  Google Scholar 

  13. Y.M. Strelniker, Phys. Rev. B 76, 085409 (2007)

    Article  ADS  Google Scholar 

  14. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 59, R12763 (1999)

    Article  ADS  Google Scholar 

  15. D.J. Bergman, Y.M. Strelniker, Phys. Rev. Lett. 80, 857 (1998)

    Article  ADS  Google Scholar 

  16. Y.M. Strelniker, D. Stroud, A.O. Voznesenskaya, Eur. Phys. J. B 52, 1 (2006)

    Article  ADS  Google Scholar 

  17. R. Juretschke, R. Landauer, J.A. Swanson, J. Appl. Phys. 27, 838 (1956)

    Article  ADS  Google Scholar 

  18. D.A.G. Bruggeman, Ann. Physik (Leipzig) 24, 636 (1935)

    Article  ADS  Google Scholar 

  19. D.J. Bergman, Y.M. Strelniker, Phys. Rev. B 60, 13016 (1999)

    Article  ADS  Google Scholar 

  20. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 50, 14001 (1994)

    Article  ADS  Google Scholar 

  21. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 77, 205113 (2008)

    Article  ADS  Google Scholar 

  22. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  23. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 127, 189901 (2007)

    Article  ADS  Google Scholar 

  24. A. Vial, T. Laroche, Appl. Phys. B: Laser Opt. 93, 139 (2008)

    Article  ADS  Google Scholar 

  25. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, M.L. de la Chapelle, Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  26. A. Vial, T. Laroche, J. Phys. D: Appl. Phys. 40, 7152 (2007)

    Article  ADS  Google Scholar 

  27. Y. Liu, R.F. Willis, Surf. Sci. 603, 2115 (2009)

    Article  ADS  Google Scholar 

  28. H. Ehrenreich, H.R. Philipp, Phys. Rev. 128, 1622 (1962)

    Article  ADS  Google Scholar 

  29. A. Liebsch, Phys. Rev. B 48, 11317 (1993)

    Article  ADS  Google Scholar 

  30. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

  32. S.A. Maier, P.G. Kik, H.A. Atwater, Appl. Phys. Lett. 81, 1714 (2002)

    Article  ADS  Google Scholar 

  33. R. Zhou, H. Li, B. Zhou, L. Wu, X. Liu, Y. Gao, Solid State Commun. 149, 657 (2009)

    Article  ADS  Google Scholar 

  34. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 67, 184416 (2003)

    Article  ADS  Google Scholar 

  35. Y.M. Strelniker, D.J. Bergman, S. Havlin, E. Mogilko, L. Burlachkov, Y. Schlesinger, Physica A 330, 291 (2003)

    Article  ADS  Google Scholar 

  36. Y.M. Strelniker, D.J. Bergman, J. Magn. Magn. Mater. 321, 814 (2009)

    Article  ADS  Google Scholar 

  37. D.J. Bergman, R. Magier, Y.M. Strelniker, Physica B 405, 3037 (2010)

    Article  ADS  Google Scholar 

  38. Y.M. Strelniker, D.J. Bergman, Y. Fleger, M. Rosenbluh, A.O. Voznesenskaya, A.P. Vinogradov, A.N. Lagarkov, Physica B 405, 2938 (2010)

    Article  ADS  Google Scholar 

  39. D.J. Bergman, Y.M. Strelniker, Phys. Rev. B 82, 174422 (2010)

    Article  ADS  Google Scholar 

  40. R. Gordon, M. Hughes, B. Leathem, K.L. Kavanagh, A.G. Brolo, Nano Lett. 5, 1243 (2005)

    Article  ADS  Google Scholar 

  41. D.J. Bergman, K.J. Dunn, Phys. Rev. B 45, 13262 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Strelniker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleger, Y., Rosenbluh, M., Strelniker, Y.M. et al. Controlling the optical spectra of gold nano-islands by changing the aspect ratio and the inter-island distance: theory and experiment. Eur. Phys. J. B 81, 85–93 (2011). https://doi.org/10.1140/epjb/e2011-10781-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10781-2

Keywords

Navigation