Skip to main content
Log in

Magnetic properties of the quantum spin-\(\frac{1}{2}\) XX diamond chain: the Jordan-Wigner approach

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The Jordan-Wigner transformation is applied to study magnetic properties of the quantum spin-\(\frac{1}{2}\) XX model on the diamond chain. Generally, the Hamiltonian of this quantum spin system can be represented in terms of spinless fermions in the presence of a gauge field and different gauge-invariant ways of assigning the spin-fermion transformation are considered. Additionally, we analyze general properties of a free-fermion chain, where all gauge terms are neglected and discuss their relevance for the quantum spin system. A consideration of interaction terms in the fermionic Hamiltonian rests upon the Hartree-Fock procedure after fixing the appropriate gauge. Finally, we discuss the magnetic properties of this quantum spin model at zero as well as non-zero temperatures and analyze the validity of the approximation used through a comparison with the results of the exact diagonalization method for finite (up to 36 spins) chains. Besides the m = 1/3 plateau the most prominent feature of the magnetization curve is a jump at intermediate field present for certain values of the frustrating vertical bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Misguich, C. Lhuillier, in Frustrated Spin Systems, edited by H.T. Diep (World Scientific, Singapore, 2004), p. 229

  2. H.-J. Mikeska, A.K. Kolezhuk, in Quantum Magnetism, Lect. Notes Phys., edited by U. Schollwöck, J. Richter, D.J.J. Farnell, R.F. Bishop (Springer, Berlin, 2004), Vol. 645, p. 1

  3. J. Richter, J. Schulenburg, A. Honecker, Lect. Notes Phys., edited by U. Schollwöck, J. Richter, D.J.J. Farnell, R.F. Bishop (Springer, Berlin, 2004), Vol. 645, p. 85

  4. O. Derzhko, J. Richter, A. Honecker, H.-J. Schmidt, Fizika Nizkikh Temperatur 33, 982 (2007) [Low Temp. Phys. 33, 745 (2007)]

    Google Scholar 

  5. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

    Article  ADS  Google Scholar 

  6. A. Honecker, J. Schulenburg, J. Richter, J. Phys.: Condens. Matter 16, S749 (2004)

    Article  ADS  Google Scholar 

  7. K. Takano, K. Kubo, H. Sakamoto, J. Phys.: Condens. Matter 8, 6405 (1996)

    Article  ADS  Google Scholar 

  8. L. Čanová, J. Strečka, M. Jaščur, J. Phys.: Condens. Matter 18, 4967 (2006)

    Article  Google Scholar 

  9. K. Takano, H. Suzuki, K. Hida, Phys. Rev. B 80, 104410 (2009)

    Article  ADS  Google Scholar 

  10. K. Hida, K. Takano, H. Suzuki, J. Phys. Soc. Jpn 78, 084716 (2009)

    Article  ADS  Google Scholar 

  11. K. Hida, K. Takano, H. Suzuki, J. Phys. Soc. Jpn 79, 044702 (2010)

    Article  ADS  Google Scholar 

  12. K. Okamoto, T. Tonegawa, Yu. Takahashi, M. Kaburagi, J. Phys.: Condens. Matter 11, 10485 (1999)

    Article  ADS  Google Scholar 

  13. K. Okamoto, T. Tonegawa, M. Kaburagi, J. Phys.: Condens. Matter 15, 5979 (2003)

    Article  ADS  Google Scholar 

  14. K. Okamoto, A. Tokuno, Y. Ichikawa, J. Phys. Chem. Solids 66, 1442 (2005)

    Article  ADS  Google Scholar 

  15. A. Tokuno, K. Okamoto, J. Phys. Soc. Jpn Suppl. 74, 157 (2005)

    Article  Google Scholar 

  16. K. Okamoto, A. Tokuno, T. Sakai, J. Magn. Magn. Mater. 310, e457 (2007)

  17. H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, Physica B 329-333, 967 (2003)

    Article  ADS  Google Scholar 

  18. Y. Hosokoshi, K. Katoh, Y. Nakazawa, H. Nakano, K. Inoue, J. Am. Chem. Soc. 123, 7921 (2001)

    Article  Google Scholar 

  19. H. Sakurai, K. Yoshimura, K. Kosuge N. Tsujii, H. Abe, H. Kitazawa, G. Kido, H. Michor, G. Hilscher, J. Phys. Soc. Jpn 71, 1161 (2002)

    Article  ADS  Google Scholar 

  20. D. Uematsu, M. Sato, J. Phys. Soc. Jpn 76, 084712 (2007)

    Article  ADS  Google Scholar 

  21. G. Lazari, T.C. Stamatatos, C.P. Raptopoulou V. Psycharis, M. Pissas, S.P. Perlepes, A.K. Boudalis, Dalton Trans. 3215 (2009)

  22. H. Ohta et al., J. Phys. Soc. Jpn 72, 2464 (2003)

    Article  ADS  Google Scholar 

  23. H. Kikuchi et al., J. Magn. Magn. Mater. 272-276, 900 (2004)

    Article  ADS  Google Scholar 

  24. H. Ohta et al., Physica B 346-347, 38 (2004)

    Article  ADS  Google Scholar 

  25. H. Kikuchi et al., Prog. Theor. Phys. Suppl. 159, 1 (2005)

    Article  ADS  Google Scholar 

  26. H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, H. Ohta, Phys. Rev. Lett. 94, 227201 (2005)

    Article  ADS  Google Scholar 

  27. K.C. Rule, A.U.B. Wolter, S. Sullow, D.A. Tennant, A. Bruhl, S. Kohler, B. Wolf, M. Lang, J. Schreuer, Phys. Rev. Lett. 100, 117202 (2008)

    Article  ADS  Google Scholar 

  28. H.-J. Mikeska, C. Luckmann, Phys. Rev. B 77, 054405 (2008)

    Article  ADS  Google Scholar 

  29. H.H. Fu, K.L. Yao, Z.L. Liu, Phys. Rev. B 73, 104454 (2006)

    Article  ADS  Google Scholar 

  30. H.H. Fu, K.L. Yao, Z.L. Liu, Phys. Rev. B 77, 219901(E) (2008)

  31. B. Gu, G. Su, Phys. Rev. B 75, 174437 (2007)

    Article  ADS  Google Scholar 

  32. H. Jeschke et al., arXiv:1012.1090v1 [cond-mat.str-el]

  33. M. Azzouz, L. Chen, S. Moukouri, Phys. Rev. B 50, 6233 (1994)

    Article  ADS  Google Scholar 

  34. T.S. Nunner, Th. Kopp, Phys. Rev. B 69, 104419 (2004)

    Article  ADS  Google Scholar 

  35. T. Verkholyak, A. Honecker, W. Brenig, Eur. Phys. J. B 49, 283 (2006)

    Article  ADS  Google Scholar 

  36. G. Müller, H. Thomas, H. Beck, J.C. Bonner, Phys. Rev. B 24, 1429 (1981)

    Article  ADS  Google Scholar 

  37. O. Derzhko, T. Krokhmalskii, J. Stolze, G. Müller, Phys. Rev. B 71, 104432 (2005)

    Article  ADS  Google Scholar 

  38. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. S. Katsura, Phys. Rev. 127, 1508 (1962)

    Article  MATH  ADS  Google Scholar 

  40. S. Katsura, Phys. Rev. 129, 2835 (1963)

    Article  ADS  Google Scholar 

  41. C.E. Zaspel, J. Chem. Phys. 86, 4713 (1987)

    Article  ADS  Google Scholar 

  42. K. Okamoto, Solid State Commun. 83, 1039 (1992)

    Article  ADS  Google Scholar 

  43. K. Okamoto, Solid State Commun. 98, 245 (1996)

    Article  ADS  Google Scholar 

  44. O. Derzhko, J. Richter, V. Derzhko, Ann. Phys. (Leipzig) 8, SI-49 (1999), arXiv:cond-mat/9908425v1

  45. K. Elk, W. Gasser, Die Methode der Greenschen Funktionen in der Festkörperphysik (Akademie-Verlag, Berlin, 1979)

  46. D.V. Dmitriev, V.Y. Krivnov, A.A. Ovchinnikov, Phys. Rev. B 65, 172409 (2002)

    Article  ADS  Google Scholar 

  47. J.-S. Caux, F.H.L. Essler, U. Löw, Phys. Rev. B 68, 134431 (2003)

    Article  ADS  Google Scholar 

  48. R. Hagemans, J.-S. Caux, U. Löw, Phys. Rev. B 71, 014437 (2005)

    Article  ADS  Google Scholar 

  49. Yan-Chao Li, J. Appl. Phys. 102, 113907 (2007)

    Article  ADS  Google Scholar 

  50. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  51. B.S. Shastry, B. Sutherland, Physica B 108, 1069 (1981)

    Article  Google Scholar 

  52. B.S. Shastry, B. Sutherland, Phys. Rev. Lett. 47, 964 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Verkholyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkholyak, T., Strečka, J., Jaščur, M. et al. Magnetic properties of the quantum spin-\(\frac{1}{2}\) XX diamond chain: the Jordan-Wigner approach. Eur. Phys. J. B 80, 433–444 (2011). https://doi.org/10.1140/epjb/e2011-10681-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10681-5

Keywords

Navigation