Skip to main content
Log in

Space-time phase transitions in driven kinetically constrained lattice models

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Kinetically constrained models (KCMs) have been widely used to study and understand the origin of glassy dynamics. These models show an ergodic-nonergodic first-order phase transition between phases of distinct dynamical “activity”. We introduce driven variants of two popular KCMs, the FA model and the (2)-TLG, as models for driven supercooled liquids. By classifying trajectories through their entropy production we prove that driven KCMs display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)

    Article  Google Scholar 

  2. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)

    Article  ADS  Google Scholar 

  3. T.R. Kirkpatrick, D. Thirumalai, P. Wolynes, Phys. Rev. A 40, 1045 (1989)

    Article  ADS  Google Scholar 

  4. M. Mézard, G. Parisi, Phys. Rev. Lett. 82, 747 (1999)

    Article  ADS  Google Scholar 

  5. J.P. Bouchaud, G. Biroli, J. Chem. Phys. 121, 7347 (2004)

    Article  ADS  Google Scholar 

  6. A. Cavagna, Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  7. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)

    Article  Google Scholar 

  8. S.A. Kivelson, G. Tarjus, Nat. Mater. 7, 831 (2008)

    Article  ADS  Google Scholar 

  9. D. Chandler, J.P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010)

    Article  Google Scholar 

  10. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Article  ADS  Google Scholar 

  11. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  12. S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000)

    Article  ADS  Google Scholar 

  13. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002)

    Article  ADS  Google Scholar 

  14. H.C. Andersen, Proc. Natl. Acad. Sci. USA 102, 6686 (2005)

    Article  ADS  Google Scholar 

  15. F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003)

    Article  ADS  Google Scholar 

  16. J.P. Garrahan et al., Phys. Rev. Lett. 98, 195702 (2007)

    Article  ADS  Google Scholar 

  17. J.P. Garrahan et al., J. Phys. A 42, 075007 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. L.O. Hedges, R.L. Jack, J.P. Garrahan, D. Chandler, Science 323, 1309 (2009)

    Article  ADS  Google Scholar 

  19. V. Lecomte, C. Appert-Rolland, F. van Wijland, J. Stat. Phys. 127, 51 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Baiesi, C. Maes, B. Wynants, Phys. Rev. Lett. 103, 010602 (2009)

    Article  ADS  Google Scholar 

  21. J. Hooyberghs, C. Vanderzande, J. Stat. Mech. P02017 (2010)

  22. R.L. Jack et al., Phys. Rev. E 78, 011506 (2008)

    Article  ADS  Google Scholar 

  23. S.M. Fielding, Phys. Rev. E 66, 016103 (2002)

    Article  ADS  Google Scholar 

  24. M. Sellitto, Phys. Rev. Lett. 101, 048301 (2008)

    Article  ADS  Google Scholar 

  25. Y. Shokef, A.J. Liu, Europhys. Lett. 90, 26005 (2010)

    Article  ADS  Google Scholar 

  26. A.C. Habdas, D. Schaar, E.R. Weeks, Europhys. Lett. 67, 477 (2004)

    Article  ADS  Google Scholar 

  27. G.H. Fredrickson, H.C. Andersen, Phys. Rev. Lett. 53, 1244 (1984)

    Article  ADS  Google Scholar 

  28. S. Whitelam, L. Berthier, J.P. Garrahan, Phys. Rev. Lett. 92, 185705 (2004)

    Article  ADS  Google Scholar 

  29. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  31. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  33. J. Jackle, K. Kronig, J. Phys.: Condens. Matter 6, 7633 (1994)

    Article  ADS  Google Scholar 

  34. A. Pan, J. Garrahan, D. Chandler, Phys. Rev. E 72, 041106 (2005)

    Article  ADS  Google Scholar 

  35. P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002)

    Article  ADS  Google Scholar 

  36. Robert L. Jack, Peter Sollich, Prog. Theor. Phys. Suppl. 184, 304 (2010)

    Article  MATH  Google Scholar 

  37. A. Baule, R.M.L. Evans, Phys. Rev. Lett. 101, 240601 (2008)

    Article  ADS  Google Scholar 

  38. J. Mehl, T. Speck, U. Seifert, Phys. Rev. E 78, 011123 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Speck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, T., Garrahan, J. Space-time phase transitions in driven kinetically constrained lattice models. Eur. Phys. J. B 79, 1–6 (2011). https://doi.org/10.1140/epjb/e2010-10800-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10800-x

Keywords

Navigation