Skip to main content

Advertisement

Log in

Thermal expansion and elasticity of PdFe3N within the quasiharmonic approximation

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We have explored the bulk modulus and the thermal expansion of PdFe3N (space group \(Pm\overline 3 m\)) using ab initio phonon dynamics within the quasiharmonic approximation in the temperature range from 50 to 1000 K. PdFe3N possesses a linear thermal expansion coefficient common for typical ceramics. The calculated average linear thermal expansion coefficient of 6.4 × 10-6 K-1 is consistent with the average measured coefficient of 6.7 × 10-6 K-1. We have shown here that the thermal behavior of this compound can be understood based on the electronic structure and the lattice dynamics thereof. PdFe3N exhibits both metallic as well as covalent-ionic bonding. The Fe–N covalent-ionic bonding suppresses the lattice vibrations of the PdFe3 matrix. The bulk modulus of 188 GPa for PdFe3N decreases by 15% in the temperature range studied, which is expected due to presence of stiff Fe–N bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mohn, K. Schwarz, S. Matar, G. Demazeau, Phys. Rev. B 45, 4000 (1992)

    Article  ADS  Google Scholar 

  2. M. Johnsson, P. Lemmens, J. Phys.: Condens. Matter 20, 264001 (2008)

    Article  ADS  Google Scholar 

  3. K. Tagawa, E. Kita, A. Tasaki, Jpn J. Appl. Phys. 21, 1596 (1982)

    Article  ADS  Google Scholar 

  4. C.A. Kuhnen, A.V. dos Santos, J. Alloys Compd. 279, 68 (2000)

    Article  Google Scholar 

  5. J. von Appen, R. Dronskowski, Angew. Chem. Int. Ed. 44, 1205 (2005)

    Article  Google Scholar 

  6. D. Music, J.M. Schneider, Appl. Phys. Lett. 88, 031914 (2006)

    Article  ADS  Google Scholar 

  7. R. Roy, D.K. Agrawal, H.A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989)

    Article  ADS  Google Scholar 

  8. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Solid State Ionics 122, 1 (1999)

    Article  Google Scholar 

  9. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  10. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  12. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  13. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  14. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  15. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  16. F. Birch, J. Geophys. Res. 83, 1257 (1978)

    Article  ADS  Google Scholar 

  17. J. Lazewski, P.T. Jochym, P. Piekarz, K. Parlinski, Phys. Rev. B 70, 104109 (2004)

    Article  ADS  Google Scholar 

  18. K. Parlinski, Z.Q. Li, Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

    Article  ADS  Google Scholar 

  19. H. Kizaki, K. Sato, A.Y.H. Katayama-Yoshida, Physica B 376–377, 812 (2006)

    Article  Google Scholar 

  20. J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, H. Winter, J. Magn. Magn. Mater. 45, 15 (1984)

    Article  ADS  Google Scholar 

  21. D. Music, T. Takahashi, L. Vitos, C. Asker, I.A. Abrikosov, J.M. Schneider, Appl. Phys. Lett. 91, 191904 (2007)

    Article  ADS  Google Scholar 

  22. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  23. D. Music, S. Konstantinidis, J.M. Schneider, J. Phys.: Condens. Matter 21, 175403 (2009)

    Article  ADS  Google Scholar 

  24. I.A. Abrikosov, A.M.N. Niklasson, S.I. Simak, B. Johansson, A.V. Ruban, H.L. Skriver, Phys. Rev. Lett. 76, 4203 (1996)

    Article  ADS  Google Scholar 

  25. I.A. Abrikosov, S.I. Simak, B. Johansson, A.V. Ruban, H.L. Skriver, Phys. Rev. B 56, 9319 (1997)

    Article  ADS  Google Scholar 

  26. J.M. Cowley, J. Appl. Phys. 21, 24 (1950)

    Article  ADS  Google Scholar 

  27. J. Rodriguez-Carvajal, FullProf version 4.0; Institut Laue-Langevin: Grenoble, France, 2007

  28. A. Houben, P. Müller, J.V. Appen, H. Lueken, R. Niewa, R. Dronskowski, Angew. Chem. Int. Ed. 44, 7212 (2005)

    Article  Google Scholar 

  29. A. Houben, V. Sepelak, K.-D. Becker, R. Dronskowski, Chem. Mater. 21, 784 (2009)

    Article  Google Scholar 

  30. A. Houben, J. Burghaus, R. Dronskowski, Chem. Mater. 21, 4332 (2009)

    Article  Google Scholar 

  31. C.E. Guillaume, CR Acad. Sci. 125, 235 (1897)

    Google Scholar 

  32. M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Nature 400, 46 (1999)

    Article  ADS  Google Scholar 

  33. A. Senyshyn, D.M. Trots, J.M. Engel, L. Vasylechko, H. Ehrenberg, T. Hansen, M. Berkowski, H. Fuess, J. Phys.: Condens. Matter 21, 145405 (2009)

    Article  ADS  Google Scholar 

  34. N. Ridley, H. Stuart, Brit. J. Appl. Phys. 1, 1291 (1968)

    Google Scholar 

  35. T.G. Kollie, Phys. Rev. B 16, 4872 (1977)

    Article  ADS  Google Scholar 

  36. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, 1976)

  37. P. Piekarz, P.T. Jochym, K. Parlinski, J. Lazewski, J. Chem. Phys. 117, 3340 (2002)

    Article  ADS  Google Scholar 

  38. Z. Wei, L. Zhe, C. Xiang-Rong, C. Ling-Cang, J. Fu-Qian, Chin. Phys. Lett. 25, 2603 (2008)

    Article  ADS  Google Scholar 

  39. C. Nordling, J. Österman, Physics Handbook for Science and Engineering (Studentlitteratur, Lund, 1996)

  40. M.A.J. Somers, N.M.v.d. Pers, D. Schalkoord, E.J. Mittemeijer, Metall. Trans. A 20A, 1533 (1989)

    ADS  Google Scholar 

  41. M. Catti, A. Pavese, Acta Cryst. B 54, 741 (1998)

    Article  Google Scholar 

  42. E.L.P. y Blancá, J. Desimoni, N.E. Christensen, H. Emmerich, S. Cottenier, Phys. Status Solidi B 246, 909 (2009)

    Article  ADS  Google Scholar 

  43. A.Y. Ignatov, S.Y. Savrasov, T.A. Tyson, Phys. Rev. B 68, 220504(R) (2003)

    Article  ADS  Google Scholar 

  44. D. Music, R. Ahuja, J.M. Schneider, Phys. Lett. A 356, 251 (2006)

    Article  ADS  MATH  Google Scholar 

  45. J.M. Schneider, D.P. Sigumonrong, D. Music, C. Walter, J. Emmerlich, R. Iskandar, J. Mayer, Scripta Mater. 57, 1137 (2007)

    Article  Google Scholar 

  46. Z. Li, J.S. Tse, Phys. Rev. B 61, 14531 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Music.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Music, D., Burghaus, J., Takahashi, T. et al. Thermal expansion and elasticity of PdFe3N within the quasiharmonic approximation. Eur. Phys. J. B 77, 401–406 (2010). https://doi.org/10.1140/epjb/e2010-00287-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00287-x

Keywords

Navigation