Skip to main content
Log in

Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied the behavior of the binding energy and photoionization cross-section of a donor-impurity in cylindrical-shape GaAs-Ga0.7Al0.3As quantum dots, under the effects of hydrostatic pressure and in-growth direction applied electric and magnetic fields. We have used the variational method under the effective mass and parabolic band approximations. Parallel and perpendicular polarizations of the incident radiation and several values of the quantum dot geometry have also been considered. Our results show that the photoionization cross-section growths as the hydrostatic pressure is increased. For parallel polarization of the incident radiation, the photoionization cross-section decreases when the impurity is shifted from the center of the dot. In the case of perpendicular polarization of the incident radiation, the photoionization cross-section increases when the impurity is shifted in the radial direction of the dot. For on-axis impurities the transitions between the ground state of the impurity and the ground state of the quantum dot are forbidden. In the low pressure regime (less than 13.5 kbar) the impurity binding energy growths linearly with pressure, and in the high pressure regime (higher than 13.5 kbar) the binding energy growths up to a maximum and then decreases. Additionally, we have found that the applied electric and magnetic fields may favor the increase or decrease in binding energy, depending on the impurity position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bastard, Phys. Rev. B 24, 4714 (1981)

    Article  ADS  Google Scholar 

  2. J.H. Burnett, H.M. Cheong, W. Paul, E.S. Koteles, B. Elman, Phys. Rev. B 47, 1991 (1993)

    Article  ADS  Google Scholar 

  3. A.M. Elabsy, Superlatt. Microstruct. 14, 65 (1993)

    Article  ADS  Google Scholar 

  4. A.M. Elabsy, J. Phys.: Condens. Matter 6, 10025 (1994)

    Article  ADS  Google Scholar 

  5. J.G. Tischler, H.A. Nickel, B.D. McCombe, B.A. Weinstein, A.B. Dzyubenko, A.Y. Sivachenko, Physica E 6, 177 (2000)

    Article  ADS  Google Scholar 

  6. A.L. Morales, A. Montes, S.Y. López, C.A. Duque, J. Phys.: Condens. Matter 14, 987 (2002)

    Article  ADS  Google Scholar 

  7. A.J. Peter, K. Navaneethakrishnan, Superlatt. Microstruct. 43, 63 (2008)

    Article  ADS  Google Scholar 

  8. E.C. Niculescu, L.M. Burileanu, A. Radu, Superlatt. Microstruct. 44, 173 (2008)

    Article  ADS  Google Scholar 

  9. E. Kasapoglu, Phys. Lett. A 373, 140 (2008)

    Article  ADS  Google Scholar 

  10. H.T. Cao, D.B. Tran Thoai, Physica B 205, 273 (1995)

    Article  ADS  Google Scholar 

  11. S. Aktas, F.K. Boz, S.S. Dalgic, Physica E 28, 96 (2005)

    ADS  Google Scholar 

  12. O. Akankan, S.E. Okan, H. Akbas, Physica E 36, 119 (2007)

    Article  ADS  Google Scholar 

  13. S. Aktas, A. Bilekkaya, S.E. Okan, Physica E 40, 2703 (2008)

    Article  ADS  Google Scholar 

  14. E. Kasapoglu, H. Sari, I. Sökmen, Physica B 353, 345 (2004)

    Article  ADS  Google Scholar 

  15. N. Raigoza, C.A. Duque, N. Porras-Montenegro, L.E. Oliveira, Physica B 371, 153 (2006)

    Article  ADS  Google Scholar 

  16. C.A. Duque, A. Montes, A.L. Morales, N. Porras-Montenegro, J. Phys.: Condens. Matter 9, 5977 (1997)

    Article  ADS  Google Scholar 

  17. A. Zounoubi, I. Zorkani, K. El Messaoudi, A. Jorio, Phys. Lett. A 312, 220 (2003)

    Article  ADS  Google Scholar 

  18. C. Xia, F. Jiang, S.Wei, X. Zhao, Microelectronics Journal 38, 663 (2007)

    Article  ADS  Google Scholar 

  19. S.T. Pérez-Merchancano, H. Parédes-Gutierrez, J. Silva-Valencia, J. Phys.: Condens. Matter 19, 026225 (2007)

    Article  ADS  Google Scholar 

  20. Z. Zhao, J. Zeng, Z.J. Ding, X.P. Wang, J.G. Hou, Z.M. Zhang, J. Appl. Phys. 102, 053509 (2007)

    Article  ADS  Google Scholar 

  21. C. Xia, Y. Liu, S. Wei, Appl. Surface Science 254, 3479 (2008)

    ADS  Google Scholar 

  22. C. Xia, F. Jiang, S. Wei, Superlatt. Microstruct. 43, 285 (2008)

    Article  ADS  Google Scholar 

  23. F. Jiang, C. Xia, S. Wei, Physica B 403, 165 (2008)

    Article  ADS  Google Scholar 

  24. F.C. Jiang, C. Xia, Y.M. Liu, S.Y. Wei, Physica E 40, 2714 (2008)

    Article  ADS  Google Scholar 

  25. C. Dane, H. Akbas, S. Minez, A. Guleroglu, Physica E 41, 278 (2008)

    Article  ADS  Google Scholar 

  26. A.L. Vartanian, L.A. Vardanyan, E.M. Kazaryan, Phys. Stat. Sol. (b) 245, 123 (2008)

    Article  Google Scholar 

  27. R.B. Santiago, L.E. Oliveira, J. d’Albuquerque e Castro, Phys. Rev. B 46, 4041 (1992)

    Article  ADS  Google Scholar 

  28. H.O. Oyoko, N. Porras-Montenegro, S.Y. López, C.A. Duque, Phys. Stat Sol. (c) 4, 298 (2007)

    Article  Google Scholar 

  29. M. de Dios-Leyva, E.Z. da Silva, L.E. Oliveira, J. Appl. Phys. 76, 3217 (1994)

    Article  ADS  Google Scholar 

  30. A. Latgé, N. Porras-Montenegro, L.E. Oliveira, Phys. Rev. B 51, 13344 (1995)

    Article  ADS  Google Scholar 

  31. A. Bruno-Alfonso, L.E. Oliveira, M. de Dios-Leyva, Appl. Phys. Lett. 67, 536 (1995)

    Article  ADS  Google Scholar 

  32. C.A. Duque, A. Montes, N. Porras-Montenegro, L.E. Oliveira, J. Phys. D: Appl. Phys. 32, 3111 (1999)

    Article  ADS  Google Scholar 

  33. S.Y. López, N. Porras-Montenegro, C.A. Duque. Physica B 362, 41 (2005)

    Article  ADS  Google Scholar 

  34. M. de Dios-Leyva, C.A. Duque, L.E. Oliveira, Phys. Rev. B 76, 075303 (2007)

    Article  ADS  Google Scholar 

  35. L.E. Oliveira, M. de Dios-Leyva, C.A. Duque, Microelectron. J. 39, 398 (2008)

    Article  Google Scholar 

  36. A.L. Morales, N. Raigoza, C.A. Duque, L.E. Oliveira, Phys. Rev. B 77, 113309 (2008)

    Article  ADS  Google Scholar 

  37. M. Takikawa, K. Kelting, G. Brunthaler, M. Takeshi, J. Komena, J. Appl. Phys. 65, 3937 (1989)

    Article  ADS  Google Scholar 

  38. M. El-Said, M. Tomak, Solid State Commun. 82, 721 (1992)

    Article  ADS  Google Scholar 

  39. J.D. Correa, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. B 241, 2440 (2004)

    Article  ADS  Google Scholar 

  40. E. Kasapoglu, U. Yesilgül, H. Sari, I. Sökmen, Physica B 368, 76 (2005)

    Article  ADS  Google Scholar 

  41. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Physica E 40, 654 (2008)

    Article  ADS  Google Scholar 

  42. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, J. Physics Chemistry of Solids 64, 31 (2003)

    Article  ADS  Google Scholar 

  43. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Superlatt. Microstruct. 44, 86 (2008)

    Article  ADS  Google Scholar 

  44. A. Sali, H. Satori, M. Fliyou, H. Loumrhari, Phys. Stat. Sol. (b) 232, 209 (2002)

    Article  Google Scholar 

  45. H. Ham, C.J. Lee, J. Korean Phys. Soc. 42, S688 (2003)

    Google Scholar 

  46. H. Ham, H.N. Spector, J. Appl. Phys. 93, 3900 (2003)

    Article  ADS  Google Scholar 

  47. J.D. Correa, O. Cepeda-Giraldo, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. (b) 241, 3311 (2004)

    Article  ADS  Google Scholar 

  48. J.D. Correa, N. Porras-Montenegro, C.A. Duque, Braz. J. Phys. 36, 387 (2006)

    Article  Google Scholar 

  49. M. sSahin, Phys. Rev. B 77, 045317 (2008)

    Article  ADS  Google Scholar 

  50. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Phys. Stat. Sol. (b) 246, 626 (2009)

    Article  Google Scholar 

  51. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque. Phys. Rev. B 69, 045323 (2004)

    Article  ADS  Google Scholar 

  52. A.M. Elabsy, Phys. Rev. B 46, 2621 (1992); Z.Y. Deng, T.R. Lai, J.K. Guo, Phys. Rev. B 50, 5732 (1994)

    Article  ADS  Google Scholar 

  53. T. Ando, H. Akera, Phys.Rev. B 40, 11619 (1989)

    Article  ADS  Google Scholar 

  54. J.P. Cuypers, W. van Haeringen, Phys. Rev. B 48, 11469 (1993)

    Article  ADS  Google Scholar 

  55. M.E. Mora-Ramos, S.Y. López, C.A. Duque, V.R. Velasco, Phys. Stat Sol. (c) 4, 418 (2007)

    Article  Google Scholar 

  56. C.A. Duque, S.Y. López, M.E. Mora-Ramos, Phys. Stat. Sol. (b) 244, 1964 (2007)

    Article  Google Scholar 

  57. M.E. Mora-Ramos, S.Y. López, C.A. Duque, Physica E 40, 1212 (2008)

    Article  ADS  Google Scholar 

  58. M.E. Mora-Ramos, S.Y. López, C.A. Duque, Eur. Phys. J. B 62, 257 (2008)

    Article  ADS  Google Scholar 

  59. O. Oubram, M.E. Mora-Ramos, L.M. Gaggero-Sager, Eur. Phys. J. B 71, 233 (2009)

    Article  Google Scholar 

  60. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996)

    MATH  Google Scholar 

  61. S.-L. Chuang, S.S. Rink, D.A.B. Miller, D.S. Chemla, Phys. Rev. B 43, 1500 (1991); B. Yoo, B.D. McCombe, W. Schaff, Phys. Rev. B 44, 13152 (1991); M. Cai, W. Liu, Y. Liu, Phys. Rev. B 46, 4281 (1992); Y.-P. Feng, H.N. Spector, Phys. Rev. B 48, 1963 (1993); A. Latgé, N. Porras-Montenegro, L.E. Oliveira, Phys. Rev. B 51, 2259 (1995); E.C. Niculescu, Mod. Physics Lett. B 14, 1073 (2000)

    Article  ADS  Google Scholar 

  62. D.S. Chemla, J. Lumin. 30, 502 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Duque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barseghyan, M., Kirakosyan, A. & Duque, C. Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects. Eur. Phys. J. B 72, 521–529 (2009). https://doi.org/10.1140/epjb/e2009-00391-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00391-0

Keywords

Navigation