Skip to main content
Log in

Intense field effects on shallow donor impurities in a quantum wire

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Laser dependence of binding energy on exciton in a GaAs quantum well wire embedded on an AlGaAs wire within the single band effective mass approximation is investigated. Laser dressed donor binding energy is calculated as a function of wire radius with the renormalization of the semiconductor gap and conduction valence effective masses. We take into account the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The spatial dielectric function and the polaronic effects have been employed in a GaAs/AlGaAs quantum wire. The numerical calculations reveal that the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, the polaronic effect enhances the binding energy considerably and the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, A. Nougaoui, Physica B 304, 389 (2001)

    Article  ADS  Google Scholar 

  2. Fanyao Qu, A.L.A. Fonseca, O.A. Nunes, Phys. Rev. B 54, 16405 (1996)

    Article  ADS  Google Scholar 

  3. Fanyao Qu, A.L.A. Fonseca, O.A. Nunes, J. Appl. Phys. 82, 1236 (1997)

    Article  ADS  Google Scholar 

  4. Fanyao Qu, Paulo César de Morais, J. Phys. Soc. 67, 513 (1998)

    Article  ADS  Google Scholar 

  5. H.S. Brandi, Ginette Jalbert, Sol. Stat. Commun. Jpn 113, 207 (2000)

    Article  Google Scholar 

  6. H.S. Brandi, A. Latge, L.E. Oliveira, Phys. Rev. B 64, 035323 (2001)

    Article  ADS  Google Scholar 

  7. H. Sari, E. Kasapoglu, I. Sokmen, N. Balkan, Semicond. Sci. Technol. 18, 470 (2003)

    Article  ADS  Google Scholar 

  8. H. Sari, E. Kasapoglu, I. Sokmen, Phys. Lett. A 311, 60 (2003)

    Article  ADS  Google Scholar 

  9. J.M. Ferreyra, C.R. Proetto, Phys. Rev. B 57, 9061 (1998)

    Article  ADS  Google Scholar 

  10. Y. Kayanum, Phys. Rev. B 44, 13085 (1991)

    Article  ADS  Google Scholar 

  11. M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, A. Nougaoui, J. Appl. Phys. 92, 232 (2002)

    Article  ADS  Google Scholar 

  12. J.W. Brown, H.N. Spector, Phys. Rev. B 35, 3009 (1987)

    Article  ADS  Google Scholar 

  13. M.H. Degani, O. Hipolito, Phys. Rev. B 35, 9345 (1987)

    Article  ADS  Google Scholar 

  14. L. Banyai, I. Galbraith, C. Ell, H. Haug, Phys. Rev. B 36, 6099 (1987)

    Article  ADS  Google Scholar 

  15. Jian-Bai Xia, K.W. Cheah, Phys. Rev. B 55, 1596 (1997)

    Article  ADS  Google Scholar 

  16. L.M. Burileanu, E. Niculescu, N. Eseanu, A. Radu, Physica E 41, 856 (2009)

    Article  ADS  Google Scholar 

  17. R.C. Miller, D.A. Kleinman, A.C. Gossard, Phys. Rev. B 29, 7085 (1984)

    Article  ADS  Google Scholar 

  18. W. Wang, E.E. Mendez, F. Stern, Appl. Phys. Lett. 45, 639 (1984)

    Article  ADS  Google Scholar 

  19. H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), 866

    Google Scholar 

  20. M. Marinescu, M. Gavrila, Phys. Rev. A 53, 2513 (1995)

    Article  ADS  Google Scholar 

  21. F. Ehlotzky, Phys. Lett. A 126, 524 (1988)

    Article  ADS  Google Scholar 

  22. N. Schildermans, M. Hayne, V.V. Moshchalkov, A. Rastelli, O.G. Schmidt, Phys. Rev. B 72, 115312 (2005)

    Article  ADS  Google Scholar 

  23. U. Ekenberg, Phys. Rev. B 40, 7714 (1989)

    Article  ADS  Google Scholar 

  24. Y. Sidor, B. Partoens, F.M. Peeters, N. Schildermans, M. Hayne, V.V. Moshchalkov, A. Rastelli, O.G. Schmidt, Phys. Rev. B 73, 155334 (2006)

    Article  ADS  Google Scholar 

  25. A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, O.G. Schmidt, Phys. Rev. Lett. 92, 166104 (2004)

    Article  ADS  Google Scholar 

  26. C. Kittel, Solid State Physics, Advances in Research and Applications (1968), Vol. 22, p. 12

    Google Scholar 

  27. A. John Peter, Chinese. Phys. Lett. 23, 946 (2006)

    Article  ADS  Google Scholar 

  28. L. Tayebi, M. Fliyou, Y. Boughaleb, L. Bouziaene, M.J. Condensed Matter 5, 128 (2004)

    Google Scholar 

  29. M. Tanaka, Y. Higo, Phys. Rev. Lett. 87, 026602 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. John Peter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhi, M., John Peter, A. Intense field effects on shallow donor impurities in a quantum wire. Eur. Phys. J. B 71, 225–231 (2009). https://doi.org/10.1140/epjb/e2009-00288-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00288-x

PACS

Navigation