Skip to main content
Log in

Toroidal moments as indicator for magneto-electric coupling: the case of BiFeO3 versus FeTiO3

  • Topical issue on Magnetoelectric Interaction Phenomena in Crystals
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we present an analysis of the magnetic toroidal moment and its relation to the various structural modes in R3c-distorted perovskites with magnetic cations on either the perovskite A or B site. We evaluate the toroidal moment in the limit of localized magnetic moments and show that the full magnetic symmetry can be taken into account by considering small induced magnetic moments on the oxygen sites. Our results give a transparent picture of the possible coupling between magnetization, electric polarization, and toroidal moment, thereby highlighting the different roles played by the various structural distortions in multiferroic BiFeO3 and in the recently discussed isostructural material FeTiO3, which has been predicted to exhibit electric field-induced magnetization switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schmid, in Magnetoelectric interaction phenomena in crystals, edited by M. Fiebig, V. Eremenko, I.E. Chupis, (Kluwer, Dordrecht, 2004), pp. 1–34

    Google Scholar 

  2. B.B. Van Aken, J.P. Rivera, H. Schmid, M. Fiebig, Nature, 449, 702 (2007)

    Article  ADS  Google Scholar 

  3. K.M. Rabe, Nature 449, 674 2007

    Article  ADS  Google Scholar 

  4. C. Ederer, N.A. Spaldin, Phys. Rev. B 76, 214404 (2007)

    Article  ADS  Google Scholar 

  5. N.A. Spaldin, M. Fiebig, M. Mostovoy, J. Phys.: Condens. Matter 20, 434203 (2008)

    Article  ADS  Google Scholar 

  6. V.M. Dubovik, V.V. Tugushev, Phys. Rep. 4, 145 (1990)

    Article  ADS  Google Scholar 

  7. D.G. Sannikov, J. Exp. Theo. Phys. 84, 293 (1997)

    Article  ADS  Google Scholar 

  8. H. Schmid, Ferroelectrics 252, 41 (2001)

    Article  Google Scholar 

  9. A.A. Gorbatsevich, Yu.V. Kopaev, V.V. Tugushev, Sov. Phys. JETP 58, 643 (1983)

    Google Scholar 

  10. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  11. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  12. S.-W. Cheong, M. Mostovoy, Nature Materials 6, 13 (2007)

    Article  ADS  Google Scholar 

  13. R. Ramesh, N.A. Spaldin, Nature Materials 6, 21 (2007)

    Article  ADS  Google Scholar 

  14. C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008)

    Article  ADS  Google Scholar 

  15. C. Ederer, C.J. Fennie, J. Phys.: Condens. Matter 20, 434219 (2008)

    Article  ADS  Google Scholar 

  16. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401(R) (2005)

    ADS  Google Scholar 

  17. I.E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)

    Google Scholar 

  18. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  19. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N. Mathur, Science 307, 1203a (2005)

    Article  Google Scholar 

  20. H. Bea, M. Bibes, S. Petit, J. Kreisel, A. Barthelemy, Philos. Mag. Lett. 87, 165 (2007)

    Article  ADS  Google Scholar 

  21. I. Sosnowska, T. Peterlin-Neumaier, E. Streichele, J. Phys. C 15, 4835 (1982)

    Article  ADS  Google Scholar 

  22. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, R1651 (1993)

    Article  ADS  Google Scholar 

  23. R. Resta, Rev. Mod. Phys. 66, 899 (1994)

    Article  ADS  Google Scholar 

  24. C.D. Batista, G. Ortiz, A.A. Aligia, Phys. Rev. Lett. 101, 077203 (2008)

    Article  ADS  Google Scholar 

  25. Depending on the amount of distortion, the corresponding structure is sometimes referred to as the “ferroelectric LiNbO3 structure”. This distinction between distorted perovskite and LiNbO3 structure is purely quantitative and thus not relevant in the present context.

  26. C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  ADS  Google Scholar 

  27. F. Kubel, H. Schmid, Acta Crystallogr. Sect. B 46, 698 (1990)

    Article  Google Scholar 

  28. J. Ko, C.T. Prewitt, Phys. Chem. Miner. 15, 355 (1988)

    Article  ADS  Google Scholar 

  29. L.C. Ming, Y.-H. Kim, Y. Uchida, Y. Wang, M. Rivers, Am. Mineral. 91, 120 (2006)

    Article  Google Scholar 

  30. Ph. Ghosez, J.-P. Michenaud, X. Gonze, Phys. Rev. B 58, 6224 (1998)

    Article  ADS  Google Scholar 

  31. R. de Souza, J.E. Moore, PRL 102, 249701 (2009)

    Article  ADS  Google Scholar 

  32. C.J. Fennie, PRL 102, 249702 (2009)

    Article  ADS  Google Scholar 

  33. D.L. Fox, J.F. Scott, J. Phys. C 10, L329 (1977)

    Article  ADS  Google Scholar 

  34. R.R. Birss, Symmetry and Magnetism (North Holland Pub., Amsterdam, 1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ederer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ederer, C. Toroidal moments as indicator for magneto-electric coupling: the case of BiFeO3 versus FeTiO3 . Eur. Phys. J. B 71, 349–354 (2009). https://doi.org/10.1140/epjb/e2009-00274-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00274-4

PACS

Navigation