Skip to main content
Log in

Stability and dynamical properties of material flow systems on random networks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Abel, B. Bernanke, Macroeconomics (Addison Wesley, 2003)

  • C. Plosser, J. Economic Perspectives 3, 51 (1989)

    Google Scholar 

  • R. Farmer, J.T. Guo, J. Economic Theory 63, 43 (1994)

    Google Scholar 

  • G. Mankiw, Euro. Econ. Rev. 36, 559 (1992)

    Google Scholar 

  • R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Google Scholar 

  • S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, New York, 2003)

  • M.E.J. Newman, A.L. Barabási, D.J. Watts, The Structure and Dynamics of Networks (Princeton University Press, US, 2006)

  • B. Drossel, A.J. McKane, Handbook of Graphs and Networks (Wiley-VCH, 2003)

  • U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, 2006)

  • S. Bornholdt, H.G. Schuster, Handbook of Graphs and Networks: From the genome to the internet (Wiley, 2006)

  • D. Helbing, S. Lämmer, U. Witt, T. Brenner, Phys. Rev. E 70, 56118 (2004)

    Google Scholar 

  • A. Ponzi, A. Yasutomi, K. Kaneko, Physica A 324, 372 (2003)

    Google Scholar 

  • D. Helbing, S. Lämmer, T. Seidel, P. Seba, T. Platkowski, Phys. Rev. E 70, 066116 (2004)

  • A. Ponzi, A. Yasutomi, K. Kaneko, J. Econ. Behavior and Organization 61, 729 (2006)

    Google Scholar 

  • G. Weisbuch, Complexus, pages 217–227 (2005)

  • G. Weisbuch, S. Battiston, Production networks and failure avalanches, [arXiv:physics/0507101v1] (2005)

  • M.D. Köenig, S. Battiston, F. Schweitzer, Innovation Networks – New Approaches in Modelling and Analyzing (Springer, 2008), Chap. Modelling Evolving Innovation Networks

  • M.D. König, S. Battiston, M. Napoletano, F. Schweitzer, Networks and Heterogeneous Media 3, 201 (2008)

    Google Scholar 

  • M.L. Mehta, Random Matrices, 3rd edn. (Elsevier/ Academic Press, Amsterdam, 2004)

  • W. Leontief, Input-Output Economics (Oxford University Press, 1986)

  • M. Spearman, D. Woodruff, W. Hopp, Int. J. Production Research 28, 879 (1990)

    Google Scholar 

  • M. Morishima, Econometrica 33, 829 (1965)

  • K. Lancaster, Mathematical Economics (Dover Publications, New York, 1987)

  • M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

  • A. De Martino, M. Marsili, I. Pérez Castillo, J. Stat. Mech. 2004, 04002 (2004)

  • A. De Martino, private communication (2007)

  • A.J. Bray, G.J. Rodgers, Phys. Rev. B 16, 11461 (1988)

    Google Scholar 

  • J.P.L. Hatchett, R. Kühn, J. Phys. A 39, 2231 (2006)

    Google Scholar 

  • B. Derrida, E. Gardner, A. Zippelius, Europhys. Lett. 4, 167 (1987)

  • K. Anand, R. Kühn, Phys. Rev. E 75, 016111 (2007)

    Google Scholar 

  • H.J. Sommers, A. Crisanti, H. Sompolinsky, Y. Stein, Phys. Rev. Lett. 60, 1895 (1988)

    Google Scholar 

  • G.J. Rodgers, A.J. Bray, Phys. Rev. B 37, 3557 (1988)

    Google Scholar 

  • G. Biroli, R. Monasson, J. Phys. A 32, L255 (1999)

  • T. Nagao, T. Tanaka, J. Phys. A 40, 4973 (2007)

    Google Scholar 

  • S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. E 68, 046109 (2003)

    Google Scholar 

  • R. Kühn, J. Phys. A 41, 295002 (2008)

    Google Scholar 

  • T. Rogers, I. Perez Castillo, R. Kühn, K. Takeda, Phys. Rev. E 78, 031116 (2008)

    Google Scholar 

  • G. Bianconi, e-print arXiv:0804.1744v1 (2008)

  • G. Semerjian, L.F. Cugliandolo, J. Phys. A: Math. Gen. 35, 4837 (2002)

    Google Scholar 

  • D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Google Scholar 

  • M.E.J. Newman, D.J. Watts, Phys. Rev. E 7332 (1999)

  • A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Google Scholar 

  • J.J. Hopfield, Proc. Nat. Acad. Sci. USA 79, 2554 (1982)

    Google Scholar 

  • A.C.C. Coolen, R. Kühn, P. Sollich, Theory of Neural Information Processing Systems (Oxford University Press, 2005)

  • A. De Martino, M. Marsili, J. Phys. A: Math. Gen. 39, R465 (2006)

  • R.M. May, Nature 238, 413 (1972)

  • R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, 2001)

  • I.D. Rozdilsky, L. Stone, Ecology Lett. 4, 397 (2001)

    Google Scholar 

  • J.A.A. Vincent, G.D. Kokkoris, Ecology Lett. 6, 498 (2003)

    Google Scholar 

  • B. Wemmenhove, N.S. Skantzos, A.C.C. Coolen, J. Phys. A: Math. Gen. 37, 7653 (2004)

    Google Scholar 

  • D. Chowdhury, D. Stauffer, Physica A 346, 7653 (2005)

    Google Scholar 

  • S. Lämmer, private communication (2007)

  • G. Biroli, R. Monasson, J. Phys. A: Math. Gen. 32, L255 (1999)

  • O. Khorunzhiy, W. Kirsch, P. Müller, Ann. Appl. Prob. 16, 295 (2006)

    Google Scholar 

  • A. De Martino, M. Marsili, J. Stat. Mech.: Theory and Experiment 09, L09003 (2005)

  • S. Diederich, M. Opper, Phys. Rev. A 39, 4333 (1989)

    Google Scholar 

  • M. Opper, S. Diederich, Phys. Rev. Lett. 69, 1616 (1992)

    Google Scholar 

  • P.J. Antsaklis, Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications 88, 879 (2000)

  • K.B. Efetov, Advances in Physics 32, 53 (1983)

    Google Scholar 

  • S.F. Edwards, R.C. Jones, J. Phys. A 9, 1595 (1976)

    Google Scholar 

  • F. Haake, F. Izrailev, N. Lehmann, D. Saher, H.J. Sommers, Z. Phys. B 88, 359 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, K., Galla, T. Stability and dynamical properties of material flow systems on random networks. Eur. Phys. J. B 68, 587–600 (2009). https://doi.org/10.1140/epjb/e2009-00106-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00106-7

PACS

Navigation