Skip to main content
Log in

Ternary alloying effect on the melting of metal clusters

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Canonical ensemble Monte Carlo simulations are applied to investigate the melting of the icosahedral 55-atom Ag-Cu-Au clusters. The clusters are modeled by the second-moment approximation of the tight-binding (TB-SMA) many-body potentials. Results show that the introduction of the only Cu atom of the third alloying metal in the bimetallic Ag43Au12 cluster, forming the Ag42Cu1Au12 cluster, can greatly increase the melting point of the cluster by about 100 K. It is also found that the substitution of the only Cu atom of the third alloying metal in the Ag1Au54 clusters, forming the Ag1Cu1Au53 cluster, can result in an increase of 40 K in the melting point. It can be concluded that the melting points of the bimetallic clusters can be tuned by the third metal impurities doping. In addition, the surface segregation of Ag atoms in the Ag-Cu-Au trimetallic clusters occurs even after melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.D. Marks, Rep. Prog. Phys. 57, 603 (1994)

    Google Scholar 

  • R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002)

  • F. Baletton, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Google Scholar 

  • C.R. Henry, Surf. Sci. Rep. 31, 231 (1998)

    Google Scholar 

  • U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Heidelberg, 1995)

  • A.J. Cox, J.G. Louderback, L.A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993)

    Google Scholar 

  • M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Google Scholar 

  • J.H. Sinfelt, Bimetallic catalysts: discoveries, concepts, and applications (Wiley, New York, 1983)

  • N. Toshima, T. Yonezawa, New J. Chem. 22, 1179 (1998)

    Google Scholar 

  • M. Yang, C. Wu, C. Zhang, H. He, Catal. Today 90, 263 (2004)

    Google Scholar 

  • A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck, R.L. Johnston, J. Chem. Phys. 122, 194308 (2005)

    Google Scholar 

  • F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. Lett. 90, 135504 (2003)

    Google Scholar 

  • G.F. Wang, M.A. VanHove, P.N. Ross, M.I. Baskes, J. Phys. Chem. B 109, 11683 (2005)

    Google Scholar 

  • D. Cheng, W. Wang, S. Huang, J. Phys. Chem. B 110, 16193 (2006)

    Google Scholar 

  • A. Aguado, M.J. López, Phys. Rev. B 72, 205420 (2005)

    Google Scholar 

  • S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 71, 195415 (2005)

    Google Scholar 

  • D. Cheng, S. Huang, W. Wang, Phys. Rev. B 74, 064117 (2006)

    Google Scholar 

  • F.Y. Chen, B.C. Curley, G. Rossi, R.L. Johnston, J. Phys. Chem. C 111, 9157 (2007)

    Google Scholar 

  • C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Phys. Rev. Lett. 95, 035501 (2005)

    Google Scholar 

  • A. Aguado, L.E. González, M.J. López, J. Phys. Chem. B 108, 11722 (2004)

    Google Scholar 

  • A. Aguado, M.J. López, S. Núñez, Comp. Mater. Sci. 35, 174 (2006)

    Google Scholar 

  • K. Joshi, D.G. Kanhere, J. Chem. Phys. 119, 12301 (2003)

    Google Scholar 

  • K. Joshi, D.G. Kanhere, Phys. Rev. A 65, 043203 (2002)

    Google Scholar 

  • A. Aguado, M.J. López, Phys. Rev. B 71, 075415 (2005)

    Google Scholar 

  • A. Aguado, J.M. Lopez, J. Chem. Theory Comput. 1, 299 (2005)

    Google Scholar 

  • D. Cheng, X. Liu, D. Cao, W. Wang, S. Huang, Nanotechnology 18, 475702 (2007); C.J. Smithells, E.A. Brandes, Smithells metals reference book, 6th edn. (Butterworth, London, 1983)

  • D.C. Wright, R.F. Gallant, L. Spangberg, J. Biomed. Mater. Res. 16, 509 (1982)

    Google Scholar 

  • S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 72, 195405 (2005)

    Google Scholar 

  • M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Google Scholar 

  • M.I. Baskes, Phys. Rev. B 46, 2727 (1992)

    Google Scholar 

  • A.P. Sutton, J. Chen, Philo. Mag. Lett. 61, 139 (1990)

    Google Scholar 

  • F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Google Scholar 

  • T. Yen, S.K. Lai, N. Jakse, J.L. Bretonnet, Phys. Rev. B 75, 165420 (2007)

    Google Scholar 

  • A.A. Dzhurakhalov, M. Hou, Phys. Rev. B 76, 045429 (2007)

    Google Scholar 

  • D. Cheng, W. Wang, S. Huang, J. Phys. Chem. C 111, 1631 (2007)

    Google Scholar 

  • D. Cheng, W. Wang, S. Huang, J. Phys. Chem. C 111, 8037 (2007)

    Google Scholar 

  • J.L. Wang, F. Ding, W.F. Shen, T.X. Li, Solid. State. Commun. 119, 13 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, D., Cao, D. Ternary alloying effect on the melting of metal clusters. Eur. Phys. J. B 66, 17–23 (2008). https://doi.org/10.1140/epjb/e2008-00377-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00377-4

PACS

Navigation