Skip to main content
Log in

An equation of state for anisotropic solids under shock loading

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An anisotropic equation of state is proposed for accurate extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked single crystals and polycrystalline alloys. The proposed equation of state represents mathematical and physical generalization of the Mie-Grüneisen equation of state for isotropic material and reduces to this equation in the limit of isotropy. Using an anisotropic nonlinear continuum framework and generalized decomposition of a stress tensor [Int. J. Plasticity 24, 140 (2008)], the shock waves propagation along arbitrary directions in anisotropic solids of any symmetry can be examined. The non-associated strength model includes the distortion effect of the yield surface which can be used to describe the anisotropic strength differential effect. A numerical calculation showed that the general pulse shape, Hugoniot Elastic Limits (HELs), and Hugoniot stress levels for aluminum alloy 7010-T6 agree with the experimental data. The results are presented and discussed, and future studies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

  2. J.N. Johnson, O.E. Jones, T.E. Michaels, J. Appl. Phys. 41, 2330 (1970)

    Article  ADS  Google Scholar 

  3. J.N. Johnson, J. Appl. Phys. 42, 5522 (1971)

    Article  ADS  Google Scholar 

  4. J.N. Johnson, J. Appl. Phys. 43, 2074 (1972)

    Article  ADS  Google Scholar 

  5. J.M. Winey, Y.M. Gupta, J. Appl. Phys. 96, 1993 (2004)

    Article  ADS  Google Scholar 

  6. G.T. Gray III, N.K. Bourne, M.A. Zocher, P.J. Maudlin, J.C.F. Millett, in Shock Compression of Condensed Matter-1999 (AIP Press, Woodbury, NY, 2000), p. 509

    Google Scholar 

  7. G.T. Gray III, M.F. Lopez, N.K. Bourne, J.C.F. Millett, K.S. Vecchio, in Shock Compression of Condensed Matter-2001 (AIP Press, Melville, NY, 2002), p. 479

    Google Scholar 

  8. C.E. Anderson, P.A. Cox, G.R. Johnson, P.J. Maudlin, Comput. Mech. 15, 201 (1994)

    Article  MATH  Google Scholar 

  9. N.K. Bourne, J.C.F. Millett, M. Chen, J.W. McCauley, D.P. Dandekar, J. Appl. Phys. 102, 073514 (2007)

    Article  ADS  Google Scholar 

  10. A.A. Lukyanov, Int. J. Plasticity 24, 140 (2008)

    Article  MATH  Google Scholar 

  11. M.A. Meyers, Dynamic Behavior of Materials (Wiley, Inc., New York, 1994)

    MATH  Google Scholar 

  12. A.V. Bushman, G.I. Kanel, A.L. Ni, V.E. Fortov, Intense dynamic Loading of Condensed Matter (Taylor and Francis, Washington, D.C., 1993)

    Google Scholar 

  13. L.M. Barker, R.E. Hollenbach, J. Appl. Phys. 43, 4669 (1972)

    Article  ADS  Google Scholar 

  14. M. Boustie, E. Auroux, J.P. Romain, Eur. Phys. J. AP 12, 47 (2000)

    Article  ADS  Google Scholar 

  15. N.K. Bourne, G.S. Stevens, Rev. Sci. Instrum. 72, 2214 (2001)

    Article  ADS  Google Scholar 

  16. N.K. Bourne, Meas. Sci. & Technol. 14, 273 (2003)

    Article  ADS  Google Scholar 

  17. G.I. Kanel, K. Baumung, H. Bluhm, V.E. Fortov, Nucl. Instr. Meth. Phys. Res. A 415, 509 (1998)

    Article  Google Scholar 

  18. M. Stoffel, Mech. Mater. 37, 1210 (2005)

    Article  Google Scholar 

  19. D.J. Steinberg, Report No. UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, CA (1991)

    Google Scholar 

  20. J.C.F. Millett, N.K. Bourne, G.T. Gray III, J. Appl. Phys. 92, 3107 (2002)

    Article  ADS  Google Scholar 

  21. N.K. Bourne, G.T. Gray III, J. Appl. Phys. 93, 8966 (2003)

    Article  ADS  Google Scholar 

  22. E.B. Zaretsky, G.I. Kanel, S.V. Razorenov, K. Baumung, Int. J. Impact Engineering 31, 41 (2005)

    Article  Google Scholar 

  23. D.C. Swift, J.G. Niemczura, D.L. Paisley, R.P. Johnson, A. Hauer, J. Appl. Phys. 98, 093512 (2005)

    Article  ADS  Google Scholar 

  24. Y.J.E. Meziere, J.C.F. Millett, N.K. Bourne, J. Appl. Phys. 100, 033513 (2006)

    Article  ADS  Google Scholar 

  25. A. Bouhemadou, R. Khenata, M. Chegaar, Eur. Phys. J. B 56, 1 (2007)

    Article  ADS  Google Scholar 

  26. A. Bouhemadou, R. Khenata, F. Zerarga, Eur. Phys. J. B 56, 209 (2007)

    Article  ADS  Google Scholar 

  27. A.D. Chijioke, W.J. Nellis, I.F. Silvera, J. Appl. Phys. 98, 073526 (2005)

    Article  ADS  Google Scholar 

  28. C. Bhattachatya, M.K. Srivastava, J. Appl. Phys. 102, 064915 (2007)

    Article  ADS  Google Scholar 

  29. J.R. Asay, M. Shahinpoor, High-Pressure Shock Compression of Solids (Springer, New York, 1993)

    MATH  Google Scholar 

  30. S. Eliezer, A. Ghatak, H. Hora, Fundamentals of Equations of State (World Scientific, New Jersey, 2002)

    MATH  Google Scholar 

  31. W.A. Spitzig, O. Richmond, Acta Metall. 32, 457 (1984)

    Article  Google Scholar 

  32. T.B. Stoughton, J.W. Yoon, Int. J. Plasticity 20, 705 (2004)

    Article  MATH  Google Scholar 

  33. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950)

    MATH  Google Scholar 

  34. T. De Vuyst, R. Vignjevic, N.K. Bourne, J. Campbell, Space Debris, 225 (2004)

  35. A.B. Kiselev, A.A. Lukyanov, Int. J. Forming Processes 5, 359 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukyanov, A.A. An equation of state for anisotropic solids under shock loading. Eur. Phys. J. B 64, 159–164 (2008). https://doi.org/10.1140/epjb/e2008-00295-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00295-5

PACS

Navigation