Skip to main content
Log in

Investigation of self-assembled fractal porous-silica over a wide range of length scales using a combined small-angle scattering method

  • Solids and Liquids
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The unique structure of a set of self-assembled porous silica materials was characterized through a combined small-angle scattering (CSAS) method using small- and ultra-small angle neutron scattering as well as small-angle X-ray scattering. The porous silica specimens investigated were prepared by a sol-gel method under the presence of alkylketene dimer (AKD) template particles and through calcination, which leads to the development of porous silica having a mass-fractal structure over length scales from ~ 100 nm to ~ 10 μm. Furthermore, the specimens posses a hierarchical structure, which consist of a fractal porous structure, and also contain primary silica particles less than 10 nm in size, which form a continuous silica matrix. To characterize these complex structures, observation over a broad range of length scales is indispensable. We propose a CSAS technique that serves this purpose well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Fricke, Aerogels (Springer-Verlag, Berlin, 1986)

  • L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    Article  Google Scholar 

  • N. Hüsing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)

    Article  Google Scholar 

  • A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Article  Google Scholar 

  • S.S. Kistler, Nature 127, 741 (1931)

    Article  ADS  Google Scholar 

  • P.H. Tewari, A.J. Hunt, K.D. Lofftus, Mat. Lett. 3, 363 (1987)

    Article  Google Scholar 

  • P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, G.D. Stucky, Science 282, 2244 (1998)

    Article  ADS  Google Scholar 

  • D. Kuang, T. Brezesinski, B. Smarsly, J. Am. Chem. Soc. 126, 10534 (2004)

    Article  Google Scholar 

  • H. Mayama, K. Tsujii, J. Chem. Phys. 125, 124706 (2006)

    Article  ADS  Google Scholar 

  • T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir. 12, 2125 (1996); S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 100, 19512 (1996); T. Minami, H. Mayama, S. Nakamura, S. Yokojima, J.-W. Shen, K. Tsujii, Soft Matter 4, 140 (2008); W. Fang, H. Mayama, K. Tsujii, Colloid Surf. A 316, 258 (2008)

    Article  Google Scholar 

  • D. Yamaguchi, N. Miyamoto, S. Koizumi, T. Nakato, T. Hashimoto, J. Appl. Cryst. 40, s101 (2007)

  • U. Bonse, M. Hart, Appl. Phys. Lett. 7, 238 (1965)

    Article  ADS  Google Scholar 

  • K. Aizawa, H. Tomimitsu, Physica B 213-214, 884 (1995)

    Google Scholar 

  • D. Yamaguchi, S. Koizumi, R. Motokawa, T. Kumada, K. Aizawa, T. Hashimoto, Physica B 385-386, 1190 (2006)

    Google Scholar 

  • P.W. Schmidt, Acta Cryst. 19, 938 (1965)

    Article  Google Scholar 

  • S. Koizimi, H. Iwase, J. Suzuki, T. Oku, R. Motokawa, H. Sasao, H. Tanaka, D, Yamaguchi, H.M. Shimizu, T. Hashimoto, Physica B 385-386, 1000 (2006)

    Google Scholar 

  • S. Koizimi, H. Iwase, J. Suzuki, T. Oku, R. Motokawa, H. Sasao, H. Tanaka, D, Yamaguchi, H.M. Shimizu, T. Hashimoto, J. Appl. Cryst. 40, s474 (2007)

  • J. Schelten, R.W. Hendricks, J. Appl. Cryst. 8, 421 (1975)

    Article  Google Scholar 

  • T.P. Russell, J.S. Lin, S. Spooner, G.D. Wignall, J. Appl. Cryst. 21, 629 (1988)

    Article  ADS  Google Scholar 

  • B. Himmel, Th. Gerber, H. Bürger, J. Non-Cryst. Solids 91, 122 (1987)

    Article  ADS  Google Scholar 

  • B. Himmel, Th. Gerber, H. Bürger, J. Non-Cryst. Solids 119, 1 (1990)

    Article  ADS  Google Scholar 

  • S.C. Nyburg, J.A. Potworowski, Acta Cryst. B 29, 347 (1973)

    Article  Google Scholar 

  • W. Piesczek, G.R. Strobl, K. Malzahn, Acta Cryst. B 30, 1278 (1974)

    Article  Google Scholar 

  • S.K. Sinha, T. Freltoft, J.K. Kjems, in Kinetics of Aggregation and Gelation, edited by F. Family, D. Landau (North-Holland, Amsterdam, 1984), p. 87

  • T. Freltoft, J.K. Kjems, S.K. Sinha, Phys. Rev. B 33, 269 (1986)

    Article  ADS  Google Scholar 

  • Here we assume that the aggregated AKD crystals (Figure 2a(iii)) are not well-defined, distinct structural units which build up the mass fractal structures. The aggregates are assumed to be rather loose so that individual AKD crystals (Figure 2a(i)) themselves are the distinct structural units

  • A. Hasmy, E. Anglaret, M. Foret, J. Pelous, R. Jullien, Phys. Rev. B 50, 6006 (1994)

    Article  ADS  Google Scholar 

  • A. Guinier, G. Fournet, Small-Angle Scattering of X-rays (J. Wiley & Sons: N.Y., 1955)

  • J.E. Martin, D.W. Schaefer, A.J. Hurd, Phys. Rev. A 33, 3540 (1986)

    Article  ADS  Google Scholar 

  • A.J. Hurd, D.W. Schaefer, J.E. Martin, Phys. Rev. A 35, 2361 (1987)

    Article  ADS  Google Scholar 

  • A. Kapitulnik, A. Aharony, G. Deutscher, D. Stauffer, J. Phys. A 16, L269 (1983)

  • E. Courtens, R. Vacher, Z. Phys. B 68, 355 (1987)

    Article  ADS  Google Scholar 

  • R. Vacher, T. Woignier, J. Pelous, Phys. Rev. B 37, 6500 (1988)

    Article  ADS  Google Scholar 

  • S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Perseus Book, Reading, Massachustts, 1994)

  • The scattering formula for the spherical particles, denoted as Psphere(q), is given by (cf. Ref. 28), \(P_{sphere} (q)=V^2e_0 ^2\left[ {3\frac{\sin (qr)-(qr)\cos (qr)}{q^3r^3}} \right]^2\) where V, e0, and r are the volume of the sphere, the scattering contrast, and the radius of the sphere, respectively

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, D., Mayama, H., Koizumi, S. et al. Investigation of self-assembled fractal porous-silica over a wide range of length scales using a combined small-angle scattering method. Eur. Phys. J. B 63, 153–163 (2008). https://doi.org/10.1140/epjb/e2008-00223-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00223-9

PACS.

Navigation