Skip to main content
Log in

Apparent correlations between the static length of relaxation and the linear size of dynamic heterogeneity in fragile liquids

  • Solids and Liquids
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The most puzzling aspect of the glass transition observed in laboratory is the decoupling of the dynamics from the structure. As an attempt to reconcile the dynamic and the static lengthscales associated with the glass problem, we discuss the apparent correlations between the static relaxation length, defined as that lengthscale over which the potential energy fluctuation is correlated, with the linear size of the dynamic heterogeneity. The dynamic heterogeneous domains with long life-times, may therefore be linked to the droplets of low potential energy, or the tightly bound regions inside the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996); C.A. Angel, Curr. Opin. Solid State Mater. Sci. 1, 578 (1996); P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996)

    Article  Google Scholar 

  • C.A. Angell, J. Non-Cryst. Sol. 131-3, 13 (1991); 102, 205 (1988)

    Google Scholar 

  • H. Vogel, Phys. Z. 22, 645 (1921); G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Google Scholar 

  • W. Kauzmann, Chem. Rev. 43, 219 (1948); F.E. Simon, Z. Anorg. Algemein. Chem. 203, 217 (1931)

    Article  Google Scholar 

  • C.A. Angell, J. Res. Natl. Inst. Stand. Tech. 102, 171 (1997); R. Richert, C.A. Angell, J. Chem. Phys. 108, 9016 (1999)

    Google Scholar 

  • M. Mezard, First steps in glass theory in More is different, edited by M.P. Ong, R.N. Bhatt (Princeton University Press, Princeton, 2001)

  • G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  • J.H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958)

    Article  ADS  Google Scholar 

  • T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Phys. Rev. A 40, 1045 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  Google Scholar 

  • H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Article  Google Scholar 

  • U. Tracht, M. Wilhelm, A. Heuer, H. Fang, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998)

    Article  ADS  Google Scholar 

  • E. Donth, J. Non-Cryst. Solids 53, 325 (1982)

    Article  Google Scholar 

  • E. Donth, H. Huth, M. Beiner, J. Phys.: Condens. Matter 13, 451 (2001)

    Article  ADS  Google Scholar 

  • L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. ElMasri, D. L'Hote, F. Ladieu, M. Pierno, Science 310, 1797 (2005)

    Article  ADS  Google Scholar 

  • J.S. Langer, Phys. Rev. Lett. 97, 115704 (2006); Phys. Rev. E 73, 041504 (2006)

    Article  ADS  Google Scholar 

  • S. Davatolhagh, J. Phys.: Condens. Matter 17, 1275 (2005)

    Article  ADS  Google Scholar 

  • H. Tanaka, J. Phys.: Condens. Matter 10, L207 (1998); H. Tanaka, J. Phys.: Condens. Matter 11, L159 (1999)

  • See also, H. Tanaka, J. Chem. Phys. 111, 3163 (1999); H. Tanaka, J. Chem. Phys. 111, 3175 (1999)

    Article  Google Scholar 

  • L.A. Fernandez, V. Martin-Mayor, P. Verrocchio, Phys. Rev. E 73, 020501 (2006)

    Article  ADS  Google Scholar 

  • G.S. Matharoo, M.S. Gulam Razul, P.H. Poole, Phys. Rev. E 74, 050502 (2006)

    Article  ADS  Google Scholar 

  • M. Goldstein, J. Chem. Phys. 51, 3728 (1969)

    Article  ADS  Google Scholar 

  • F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982); Science 225, 983 (1984)

    Article  ADS  Google Scholar 

  • F.H. Stillinger, Science 267, 1935 (1995)

    Article  ADS  Google Scholar 

  • S. Buchner, A. Heuer, Phys. Rev. Lett. 84, 2168 (2000); Phys. Rev. E 60, 6507 (1999)

    Article  ADS  Google Scholar 

  • B. Doliwa, A. Heuer, Phys. Rev. Lett. 91, 235501 (2003); Phys. Rev. E 67, 031506 (2003)

    Article  ADS  Google Scholar 

  • A. Saksaengwijit, B. Doliwa, A. Heuer, J. Phys.: Condens. Matter 15, 1237 (2003)

    Article  ADS  Google Scholar 

  • S. Sastry, P.G. Debenedetti, F.H. Stillinger, T.B. Schroder, J.C. Dyre, S.C. Glotzer, Physica A 270, 301 (1999)

    Article  Google Scholar 

  • R.L. Leheny, N. Menon, S.R. Nagel, D.L. Price, K. Suzuya, P. Thiyagarajan, J. Chem. Phys. 105, 7783 (1996); A. van Blaaderen, P. Wiltzius, Science 270, 1177 (1995)

    Article  ADS  Google Scholar 

  • See, e.g., S. Davatolhagh, Am. J. Phys. 74, 441 (2006)

    Article  Google Scholar 

  • A. de Candia, A. Coniglio, Phys. Rev. E 65, 16132 (2001)

    Article  Google Scholar 

  • See, also, Fig. 3 in M. Campellone, B. Coluzzi, G. Parisi, Phys. Rev. B 58, 12081 (1998)

    Article  ADS  Google Scholar 

  • U. Mohanty, J. Chem. Phys. 100, 5905 (1994); Adv. Chem. Phys. 89, 89 (1994); A.B. Bestul, S.S. Chang, J. Chem. Phys. 40, 731 (1964)

    Article  ADS  Google Scholar 

  • An analogous, but long-range effect, arising from two-point density fluctuations is the cause of critical opalescence observed in fluids at their critical point. See, e.g., H.E. Stanley, Introduction to phase transitions and critical phenomena (Oxford University Press, Oxford, 1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Davatolhagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davatolhagh, S. Apparent correlations between the static length of relaxation and the linear size of dynamic heterogeneity in fragile liquids. Eur. Phys. J. B 59, 291–295 (2007). https://doi.org/10.1140/epjb/e2007-00291-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00291-3

PACS.

Navigation