Skip to main content
Log in

Individual charge traps in silicon nanowires

Measurements of location, spin and occupation number by Coulomb blockade spectroscopy

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study anomalies in the Coulomb blockade spectrum of a quantum dot formed in a silicon nanowire. These anomalies are attributed to electrostatic interaction with charge traps in the device. A simple model reproduces these anomalies accurately and we show how the capacitance matrices of the traps can be obtained from the shape of the anomalies. From these capacitance matrices we deduce that the traps are located near or inside the wire. Based on the occurrence of the anomalies in wires with different doping levels we infer that most of the traps are arsenic dopant states. In some cases the anomalies are accompanied by a random telegraph signal which allows time resolved monitoring of the occupation of the trap. The spin of the trap states is determined via the Zeeman shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  • B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  • J.M. Elzerman, R. Hanson, L.H.W. van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004)

    Article  ADS  Google Scholar 

  • J. Gorman, D.G. Hasko, D.A. Williams, Phys. Rev. Lett. 95, 090502 (2005)

    Article  ADS  Google Scholar 

  • P. Lafarge, H. Pothier, E.R. Williams, D. Estève, C. Urbina, M.H. Devoret, Z. Phys. B 85, 327 (1991)

    Article  Google Scholar 

  • L.W. Molenkamp, K. Flensberg, M. Kemerink, Phys. Rev. Lett. 75, 4282 (1995)

    Article  ADS  Google Scholar 

  • W. Lu, Z. Ji, L. Pfeiffer, K.W. West, A.J. Rimber, Nature 423, 422 (2003)

    Article  ADS  Google Scholar 

  • T. Fujisawa, T. Hayashi, Y. Hirayama, Appl. Phys. Lett. 84, 2343 (2004)

    Article  ADS  Google Scholar 

  • S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 96, 076605 (2006)

    Article  ADS  Google Scholar 

  • J. Bylander, T. Duty, P. Delsing, Nature 434, 361 (2005)

    Article  ADS  Google Scholar 

  • L.S. Levitov, G.B. Lesovik, JETP Lett. 58, 230 (1993)

    ADS  Google Scholar 

  • S.W. Jung, T. Fujisawa, Y. Hirayama, Y.H. Jeong, Appl. Phys. Lett. 85, 768 (2004)

    Article  ADS  Google Scholar 

  • N.M. Zimmerman, J.L. Cobb, A.F. Clark, Phys. Rev. B 56, 7675 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • X. Jehl, M. Sanquer, G. Bertrand, G. Guégan, S. Deleonibus, J. Phys. IV France 12, 107 (2002)

    Google Scholar 

  • K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, K. Seki, IEEE Trans. Electron Devices 41, 1628 (1994)

    Article  Google Scholar 

  • G. Molas, B.D. Salvo, G. Ghibaudo, D. Mariolle, A. Toffoli, N. Buffet, R. Puglisi, S. Lombardo, S. Deleonibus, IEEE Trans. Nanotech. 3, 42 (2004)

    Article  Google Scholar 

  • S.R. Schofield, N.J. Curson, M.Y. Simmons, F.J. Rueß, T. Hallam, L. Oberbeck, R.G. Clark, Phys. Rev. Lett. 91, 136104 (2003)

    Article  ADS  Google Scholar 

  • L.C.L. Hollenberg, A.S. Dzurak, C. Wellard, A.R. Hamilton, D.J. Reilly, G.J. Milburn, R.G. Clark, Phys. Rev. B 69, 113301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsimring, Phys. Rev. B 68, 193207 (2003)

    Article  ADS  Google Scholar 

  • M. Xiao, I. Martin, H.W. Jiang, Phys. Rev. Lett. 91, 078301 (2003)

    Article  ADS  Google Scholar 

  • M. Xiao, L. Martin, E. Yablonovitch, H.W. Jiang, Nature 430, 435 (2004)

    Article  ADS  Google Scholar 

  • B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors, Number 45 in Solid State Sciences (Springer, 1984)

  • M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, S. Deleonibus, Appl. Phys. Lett. 89, 143504 (2006)

    Article  Google Scholar 

  • A.K. Savchenko, V.V. Kuznetsov, A. Woolfe, D.R. Mace, M. Pepper, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 52, R17021 (1995)

  • M. Boehm, M. Hofheinz, X. Jehl, M. Sanquer, M. Vinet, B. Previtali, D. Fraboulet, D. Mariolle, S. Deleonibus, Phys. Rev. B 71, 033305 (2005)

    Article  ADS  Google Scholar 

  • D.E. Grupp, T. Zhang, G.J. Dolan, N.S. Wingreen, Phys. Rev. Lett. 87, 186805 (2001)

    Article  ADS  Google Scholar 

  • R. Berkovits, F. von Oppen, Y. Gefen, Phys. Rev. Lett. 94, 076802 (2005)

    Article  ADS  Google Scholar 

  • I.M. Ruzin, V. Chandrasekhar, E.I. Levin, L.I. Glazman, Phys. Rev. B 45, 13469 (1992)

    Article  ADS  Google Scholar 

  • F.R. Waugh, M.J. Berry, D.J. Mar, R.M. Westervelt, K.L. Campman, A.C. Gossard, Phys. Rev. Lett. 75, 705 (1995)

    Article  ADS  Google Scholar 

  • L.P. Rokhinson, L.J. Guo, S.Y. Chou, D.C. Tsui, E. Eisenberg, R. Berkovits, B.L. Altshuler, Phys. Rev. Lett. 88, 186801 (2002)

    Article  Google Scholar 

  • Single charge tunneling: Coulomb blockade phenomena in nanostructures, edited by H. Grabert, M.H. Devoret, Vol. 294 of NATO ASI series B: Physics (Plenum Press, 1992)

  • Y. Imry, Y. Gefen, D.J. Bergman, Phys. Rev. B 26, 3436 (1982)

    Article  ADS  Google Scholar 

  • G. Molas, X. Jehl, M. Sanquer, B.D. Salvo, D. Lafond, S. Deleonibus, IEEE Trans. Nanotech. 4, 374 (2005)

    Article  Google Scholar 

  • T.G. Castner, N.K. Lee, G.S. Cieloszyk, G.L. Salinger, Phys. Rev. Lett. 34, 1627 (1975)

    Article  ADS  Google Scholar 

  • W.N. Shafarman, D.W. Koon, T.G. Castner, Phys. Rev. B 40, 1216 (1989)

    Article  ADS  Google Scholar 

  • M.J. Kirton, M.J. Uren, Adv. Phys. 38, 367 (1989)

    Article  ADS  Google Scholar 

  • T.M. Buehler, D.J. Reilly, R.P. Starrett, V.C. Chan, A.R. Hamilton, A.S. Dzurak, R.G. Clark, J. Appl. Phys. 96, 6827 (2004)

    Article  ADS  Google Scholar 

  • O. Naaman, J. Aumentado, Phys. Rev. Lett. 96, 100201 (2006)

    Article  ADS  Google Scholar 

  • T. Itakura, Y. Tokura, Phys. Rev. B 67, 195320 (2003)

    Article  ADS  Google Scholar 

  • D. Weinmann, W. Häusler, B. Kramer, Phys. Rev. Lett. 74, 984 (1995)

    Article  ADS  Google Scholar 

  • G. Feher, Phys. Rev. 114, 1219 (1959)

    Article  ADS  Google Scholar 

  • R.N. Bhatt, T.M. Rice, Phys. Rev. B 23, 1920 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hofheinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofheinz, M., Jehl, X., Sanquer, M. et al. Individual charge traps in silicon nanowires. Eur. Phys. J. B 54, 299–307 (2006). https://doi.org/10.1140/epjb/e2006-00452-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00452-x

PACS.

Navigation