Skip to main content
Log in

Control of extraordinary light transmission through perforated metal films using liquid crystals

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We calculate the effective dielectric tensor of a metal film penetrated by cylindrical holes filled with a nematic liquid crystal (NLC). We assume that the director of the NLC is parallel to the film, and that its direction within the plane can be controlled by a static magnetic field, via the Freedericksz effect. To calculate the effective dielectric tensor, we consider both randomly distributed holes (using a Maxwell-Garnett approximation) and a square lattice of holes (using a Fourier technique). Both the holes and the lattice constant of the square lattice are assumed small compared to the wavelength. The films are found to exhibit extraordinary light transmission at special frequencies related to the surface plasmon resonances of the composite film. Furthermore, the frequencies of peak transmission are found to be substantially split when the dielectric in the holes is anisotropic. For typical NLC parameters, the splitting is of order 5–10% of the metal plasma frequency. Thus, the extraordinary transmission can be controlled by a static magnetic or electric field whose direction can be rotated to orient the director of the NLC. Finally, as a practical means of producing the NLC-filled holes, we consider the case where the entire perforated metal film is dipped into a pool of NLC, so that all the holes are filled with the NLC, and there are also homogeneous slabs of NLC on both sides of the film. The transmission in this geometry is shown to have similar characteristics to that in which the NLC-filled screen is placed in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T.W. Ebbesen, H.H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  • H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)

    Article  ADS  Google Scholar 

  • J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999)

    Article  ADS  Google Scholar 

  • L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001)

    Article  ADS  Google Scholar 

  • Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 59, R12763 (1999)

  • Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 50, 14001 (1994)

    Article  ADS  Google Scholar 

  • D.J. Bergman, Y.M. Strelniker, Phys. Rev. B 49, 16256 (1994)

    Article  ADS  Google Scholar 

  • D.J. Bergman, Y.M. Strelniker, Phys. Rev. Lett. 80, 857 (1998)

    Article  ADS  Google Scholar 

  • D.M. Newman, M.L. Wears, R.J. Matelon, Europhys. Lett. 68, 692 (2004)

    Article  ADS  Google Scholar 

  • G. Duchs, G.L.J.A. Rikken, T. Grenet, P. Wyder, Phys. Rev. Lett. 87, 127202 (2001)

    Article  ADS  Google Scholar 

  • L.E. Helseth, Phys. Rev. B 72, 033409 (2005)

    Article  ADS  Google Scholar 

  • A. Garcia-Martin, G. Armelles, S. Pereira, Phys. Rev. B 71, 205116 (2005)

    Article  ADS  Google Scholar 

  • M. Diwekar, V. Kamaev, J. Shi, Z.V. Vardeny, Appl. Phys. Lett. 84, 3112 (2004)

    Article  ADS  Google Scholar 

  • M. Golosovsky, Y. Neve-Oz, D. Davidov, Phys. Rev. B 71, 195105 (2005)

    Article  ADS  Google Scholar 

  • B. Sepulveda, L.M. Lechuga, G. Armelles, J. Lightwave Technology 24, 945 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Boardman, N. King, Y. Rapport, L. Velasco, New Journal of Physics 7, 191 (2005)

    Article  Google Scholar 

  • K. Busch, S. John, Phys. Rev. Lett. 83, 967 (1999)

    Article  ADS  Google Scholar 

  • J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T.A. Klar, J. Feldmann, Appl. Phys. Lett. 81, 171 (2002)

    Article  ADS  Google Scholar 

  • S.Y. Park, D. Stroud, Appl. Phys. Lett. 85, 2920 (2004)

    Article  ADS  Google Scholar 

  • S.Y. Park, D. Stroud, Phys. Rev. Lett. 94, 217401 (2005)

    Article  ADS  Google Scholar 

  • D. Kang, J.E. Maclennan, N.A. Clark, A.A. Zakhidov, R.H. Baughman, Phys. Rev. Lett. 86, 4052 (2001)

    Article  ADS  Google Scholar 

  • H. Takeda, K. Yoshino, Phys. Rev. B 66, 115207 (2002)

    Article  ADS  Google Scholar 

  • In reality, the orientation of the director within the cylindrical hole is controlled by a balance between surface forces, the various elastic constants of the NLC, and any applied static electric or magnetic fields. However, in carrying out of our calculations, we neglect the influence of the cylindrical hole walls on the liquid crystal. In a realistic hole, the walls might locally reorient \(\hat{n}\), causing it to be locally perpendicular to the wall. This effect has not been included in our calculations. As discussed by Lubensky et al. [T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998)], this effect is typically small, for composites with length scales less than around 0.3 μm. For composites with larger length scales, such reorientation might need to be considered

    Article  Google Scholar 

  • P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1991)

  • V. Freedericksz, V. Zolina, Z. Krist. B 72, 255 (1931); Trans. Faraday Soc. 29, 919 (1933)

    Google Scholar 

  • Y.M. Strelniker, D.J. Bergman, Eur. Phys. J. AP 7, 19 (1999)

    Article  ADS  Google Scholar 

  • D. Stroud, Phys. Rev. B 12, 3368 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • D.J. Bergman, Y.M. Strelniker, Phys. Rev. B 60, 13016 (1999)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (Pergamon, Oxford, 1993)

  • D.J. Bergman, D. Stroud, Solid State Physics 46, 147 (1992)

    Article  ADS  Google Scholar 

  • L.M. Blinov, V.A. Kizel, V.G. Rumyantsev, V.V. Titov, J. Phys. 36, Colloq. C1, C1-69 (1975)

  • L.M. Blinov, V.G. Chigrinov, Electro-Optic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994)

  • C. Sönnichsen, A.C. Duch, G. Steininger, M. Koch, G. von Plessen, Appl. Phys. Lett. 76, 140 (2000)

    Article  ADS  Google Scholar 

  • A.M. Dykhne, A.K. Sarychev, V.M. Shalaev, Phys. Rev. B 67, 195402 (2003)

    Article  ADS  Google Scholar 

  • D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Y.H. Ahn, K.J. Yee, J.W. Park, J. Kimm, Q.H. Park, C. Lienau, Phys. Rev. Lett. 91, 143901 (2003)

    Article  ADS  Google Scholar 

  • F.I. Baida, D. Van Labeke, Phys. Rev. B 67, 155314 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Strelniker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strelniker, Y., Stroud, D. & Voznesenskaya, A. Control of extraordinary light transmission through perforated metal films using liquid crystals. Eur. Phys. J. B 52, 1–7 (2006). https://doi.org/10.1140/epjb/e2006-00270-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00270-2

PACS.

Navigation