Skip to main content
Log in

Experimental study of electron-phonon properties in ZrB 2

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

High quality samples and absence of superconductivity down to 40 mK make of ZrB2 the best normal state reference system for the superconducting isostructural MgB2. Actually, the question of pairing has to be focused on the electron-phonon interaction in the normal state. After presenting the resistivity measurements of ZrB2, we explain the details of the Bloch-Grüneisen and Einstein models used to deduce the first results. We then compare experimental de Haas-van Alphen effect data with theoretical Fermi surfaces to present additional results on electron quasi-particle renormalization. The estimations reveal an isotropic and negligible coupling constant of in average \(\left\langle \lambda_{tr} \right\rangle=\) 0.145. The contribution of the coupling to the optical phonon modes is 0.082, in contrast to the known larger coupling of 0.283 [3] to the E2g phonon mode in MgB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Nagamatsu, N. Nagakawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London) 410, 63 (2001)

    Article  ADS  Google Scholar 

  • M. Putti, E. Galleani d'Agliano, D. Marrè, F. Napoli, M. Tassisto, P. Manfrinetti, A. Palenzona, C. Rizzuto, S. Massidda, Eur. Phys. J. B 25, 439 (2002)

    Article  ADS  Google Scholar 

  • T. Masui, K. Yoshida, S. Lee, A. Yamamoto, S. Tajima, Phys. Rev. B 65, 214513 (2002)

    Article  ADS  Google Scholar 

  • F. Monteverde, A. Bellosi, Adv. Eng. Mater. 6, 331 (2004); S.C. Tjong, G. Wang, Adv. Eng. Mater. 6 964 (2004); V. Medri, F. Monteverde, A. Balbo, A. Bellosi, Adv. Eng. Mater. 7, 159 (2005)

    Article  Google Scholar 

  • R. Heid, K.-P. Bohnen, to be published

  • H. Rosner, J.M. An, W.E. Pickett, S.-L. Drechsler, Phys. Rev. B 66, 024521 (2002)

    Article  ADS  Google Scholar 

  • The samples used in this work and in RefRosner2, RefDrechs are cut from the same crystal rod, for reference see: S. Otani, Y. Ishizawa, J. Crystal Growth 165, 319 (1996)

    Article  Google Scholar 

  • E. Forzani, Master Thesis, Universität Göttingen, 2003

  • F. Bloch, Z. Phys. 52, 555 (1929); F. Bloch, Z. Phys. 59, 208 (1930)

    Article  Google Scholar 

  • A.V. Sologubenko, J. Jun, S.M. Kasakov, J. Karpinski, H. Rott, cond-mat/0111273 (unpublished)

  • J.M. Ziman, Electrons and Phonons (Oxford, Clarendon Press 1960) pp. 357–382

  • The transformation consists in a series of substitutions applied when the Debye integral is expressed as in (3). The development of the integral (3) to \(\label{eqn:Jm2} J_{m}\left(\frac{\Theta_{D}}{T}\right)= \int^{\Theta_{D}/T}_{0}\frac{z^m\:dz}{e^z +e^{-z} -2}\ , %\label{eqn:Jm2} \) after considering that \(\label{eqn:hyp} {\rm cosh} z= \frac{e^z +e^{-z}}{2} \ \ \textrm{and} \ \ {\rm sinh}^2 \left(\frac{z}{2}\right)= \frac{{\rm cosh{\it z}} -1}{2}\ , %\label{eqn:hyp} \) reduces into \(\label{eqn:Jm3} \int^{\Theta_{D}/T}_{0}\frac{z^m}{2^2}\frac{dz}{{\rm sinh}^2\left(\frac{z}{2}\right)} = \int^{\Theta_{D}/T}_{0}z^{m-2} \left[\frac{\frac{z}{2}}{{\rm sinh}\frac{z}{2}}\right]^2dz\ . %\label{eqn:Jm3} \) Using \(\frac{z}{2}\) as integration variable, \(J_{m}(\frac{\Theta_{D}}{T})\) assumes the form in equation (5)

  • E. Grüneisen, Handb. d. Phys. XIII, 18

  • X.H. Chen, Y.S. Wang, Y.Y. Xue, R.L. Meng, Y.Q. Wang, C.W. Chu, Phys. Rev. B 65, 024502 (2001) and references therein

    Article  ADS  Google Scholar 

  • M. Mott, Proc. Phys. Soc. 47, 571 (1935)

    Article  Google Scholar 

  • A. Wilson, Proc. Roy. Soc. A 167, 580 (1938)

    ADS  Google Scholar 

  • I.I. Mazin, O.V. Dolgov, Phys. Rev. B 45, 2509 (1992)

    Article  ADS  Google Scholar 

  • This approach was applied to MgB2 in RefPutti1: sintered bulk MgB2 shows a ΘD of 1050 K and \(\acute{\rho}\) of 4.9×10-1 μΩ cm/K.

  • J.M. Ziman, Electrons and Phonons (Oxford, Clarendon Press 1960), pp. 257-264

  • N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders International Editions, 1981), pp. 244–251

  • F.J. Pinski, P.B. Allen, W.H. Butler, Phys. Rev. B 23, 5080 (1981)

    Article  ADS  Google Scholar 

  • D.J. Scalapino, in Superconductivity, edited by R.D. Parks (M. Dekker, New York, 1969), Vol. 1, pp. 449–500

  • W.L. McMillan, Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  • The substitution in (30) of the integration variable \(\omega \rightarrow x = \frac{\hbar \omega}{2 k_B T}\) and the introduction of the Debye frequency \(\omega_D=\frac{k_B}{\hbar}\Theta_D\) produces the resistivity formula (31)

  • T.I. Jeon, D. Grischkowsky, Phys. Rev. L 78, 1106 (1997)

    Article  ADS  Google Scholar 

  • C.N. King, H.C. Kirsh, T.H. Geballe, Solid State Comm. 9, 907 (1971)

    Article  Google Scholar 

  • Method adopted to transport measurements at single-crystal MgB2 in RefMasui

  • P.B. Allen, W.W. Schulz, Phys. Rev. B 47, 14434 (1993)

    Article  ADS  Google Scholar 

  • P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

  • After writing the integration variable of (41) explicitely, \(\omega = \frac{2 k_B T}{\hbar \omega}x\), and introducing the Einstein frequency as \(\omega_E=\frac{k_B}{\hbar}\Theta_E\), the use of the relation \(\delta(k x) = \frac{1}{\left| k \right|} \delta(x)\) trans- forms the delta function into \(\label{eqn:deltavarchange} \delta(\omega-\omega_E) = \frac{\hbar}{2 k_B T} \delta\left(x-\frac{\Theta_E}{2T}\right) \ . %\label{eqn:deltavarchange} \) Considering that \(\label{eqn:deltaint} \int^{+\infty}_{-\infty} f(x) \delta(x-a) dx = f(a) \ \ \textrm{with} \ \ -\infty < a <+\infty \ , %\label{eqn:deltaint} \) the resistivity formula reduces to (42)

  • S.-L. Drechsler, private communications

  • K.-P. Bohnen, R. Heid, B. Renker, Phys. Rev. L 86, 5771 (2001) and references therein

    Article  ADS  Google Scholar 

  • K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, J. Phys.: Cond. Matter 13, 9945 (2001)

    Article  ADS  Google Scholar 

  • D. Shoenberg, Magnetic oscillations in metals (Cambridge, 1984)

  • For a complete treatise see Chapter 2 and 3 in RefForzani

  • For all our experiments we found that 0.3< m*t <1.2, with m*≈ 0.5 and \(\left\langle B\right\rangle=9.3\) T, so that the exponential term in equation (54) cannot be neglected. On the contrary, if e-2m*t≪1, the direct plot of ln(A/T) against T/B would give immediately a straight line of slope -bm*

  • Results from: T. Tanaka, Y. Ishizawa, E. Bannai, S. Kawai, Solid State Comm. 26, 879 (1978). For the technique see also: Y.Ishizawa and T. Tanaka, Inst. Phys. Conf. Ser. No. 75, 29 (1986)

    Article  Google Scholar 

  • S.-L. Drechsler, H. Rosner, J.M. An, W.E. Pickett, V.D.P. Servedio, T. Mishonov, E. Forzani, K. Winzer, J. Low Temp. Phys. 131, 1175 (2003)

    Article  Google Scholar 

  • The amplitudes of the α and β frequencies show nearly no temperature dependence at our low temperatures. This behaviour is caused by the very small effective masses mα, β*. The scattering of the data prevent any evaluation of mα, β*

  • B.A. Sanborn, P.B. Allen, D.A. Papaconstantopoulos, Phys. Rev. B 40, 6037 (1989)

    Article  ADS  Google Scholar 

  • H. Rosner, private communications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Forzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forzani, E., Winzer, K. Experimental study of electron-phonon properties in ZrB 2. Eur. Phys. J. B 51, 29–40 (2006). https://doi.org/10.1140/epjb/e2006-00190-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00190-1

PACS.

Navigation