Skip to main content
Log in

Immunization of real complex communication networks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Most communication networks are complex. In this paper, we address one of the fundamental problems we are facing nowadays, namely, how we can efficiently protect these networks. To this end, we study an immunization strategy and found that it works almost as good as targeted immunization, but using only local information about the network topology. Our findings are supported with numerical simulations of the Susceptible-Infected-Removed (SIR) model on top of real communication networks, where immune nodes are previously identified by a covering algorithm. The results provide useful hints in the way to designing and deploying a digital immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.F.M. Faloutsos, C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999)

    Article  Google Scholar 

  • R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  • A. Vázquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 66130 (2002)

    Article  Google Scholar 

  • R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, 2004)

  • A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  • A.-L. Barabási, R. Albert, H. Jeong, Physica A 272, 173 (1999)

    Article  ADS  Google Scholar 

  • S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks. From Biological Nets to the Internet and the WWW (Oxford University Press, Oxford, UK, 2003)

  • M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Handbook of Graphs and Networks, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, Germany, 2003)

  • R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  • R. Pastor-Satorras, A. Vespignani. Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  • R. Pastor-Satorras, A. Vespignani. Phys. Rev. E 63, 066117 (2001)

    Article  ADS  Google Scholar 

  • Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26 521 (2002)

    Google Scholar 

  • A.L. Lloyd, R.M. May, Science 292, 1316 (2001)

    Article  Google Scholar 

  • M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90 28701 (2003)

    Google Scholar 

  • Y. Moreno, J.B. Gómez, A.F. Pacheco. Phys. Rev. E 68 035103R (2003)

  • A. Vázquez, Y.Moreno, Phys. Rev. E 67, 015101R (2003)

    Article  ADS  Google Scholar 

  • R.M. Anderson, R.M. May, Infectious diseases in humans (Oxford University Press, Oxford, 1992)

  • R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)

    Article  ADS  Google Scholar 

  • Z. Dezso, A.-L. Barabási, Phys. Rev. E 65, 055103R (2002)

    Article  ADS  Google Scholar 

  • P. Echenique, J. Gómez-Gardeñes, Y. Moreno, A. Vázquez, Phys. Rev. E 71, 035102R (2005)

    Article  ADS  Google Scholar 

  • R. Cohen, S. Havlin, D. ben-Avraham, Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  • The National Laboratory for Applied Network Research (NLANR), National Science Foundation, http://moat.nlanr.net/

  • Mapping the Internet within the SCAN project, Information Sciences Institute, http://www.isi.edu/div7/scan/

  • D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  • A. Vázquez, Phys. Rev. E 67 056104, (2003)

  • R. Pastor-Satorras, A. Vázquez, A. Vespignani, in Complex Networks, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai, Lecture Notes in Physics, Vol. 650 (Springer, Berlin, 2004), p. 425

  • Strictly speaking, our algorithm is neither completely local nor global. In fact, by tuning the distance d of the immunization (covering) strategy one can move from a truly local algorithm to an algorithm close to the targeted immunization approach for d∼D, being D the diameter of the network. In this sense, our method is half-a-way between strictly local and global strategies. This difference diffuses when one consider ultra-small world networks, which is not our case

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Gardeñes, J., Echenique, P. & Moreno, Y. Immunization of real complex communication networks. Eur. Phys. J. B 49, 259–264 (2006). https://doi.org/10.1140/epjb/e2006-00041-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00041-1

Keywords

Navigation