Skip to main content
Log in

Corner wetting in a far-from-equilibrium magnetic growth model

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The irreversible growth of magnetic films is studied in three-dimensional confined geometries of size L×L×M, where M≫L is the growing direction. Competing surface magnetic fields, applied to opposite corners of the growing system, lead to the observation of a localization-delocalization (weakly rounded) transition of the interface between domains of up and down spins on the planes transverse to the growing direction. This effective transition is the precursor of a true far-from-equilibrium corner wetting transition that takes place in the thermodynamic limit. The phenomenon is characterized quantitatively by drawing a magnetic field-temperature phase diagram, firstly for a confined sample of finite size, and then by extrapolating results, obtained with samples of different size, to the thermodynamic limit. The results of this work are a nonequilibrium realization of analogous phenomena recently investigated in equilibrium systems, such as corner wetting transitions in the Ising model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Google Scholar 

  • A.O. Parry, R. Evans, Phys. Rev. Lett. 64, 439 (1990); A.O. Parry, R. Evans, Physica A 181, 250 (1992)

    Article  ADS  Google Scholar 

  • M.R. Swift, A.L. Owczarek, J.O. Indekeu, Europhys. Lett. 14, 465 (1991)

    ADS  Google Scholar 

  • K. Binder, D.P. Landau, A.M. Ferrenberg, Phys. Rev. Lett. 74, 298 (1995); K. Binder, D.P. Landau, A.M. Ferrenberg, Phys. Rev. E 51, 2823 (1995); K. Binder, D.P. Landau, A.M. Ferrenberg, Phys. Rev. E 53, 5023 (1995)

    Article  ADS  Google Scholar 

  • A. Maciolek, J. Stecki, Phys. Rev. B 54, 1128 (1996)

    ADS  Google Scholar 

  • A. Maciolek, J. Phys. A (Math. and Gen.) 29, 3837 (1996)

    ADS  MATH  Google Scholar 

  • A. Wener, F. Schmid, M. Mueller, K. Binder, J. Chem. Phys. 107, 8175 (1997)

    ADS  Google Scholar 

  • H. Liu, A. Bhattacharya, A. Chakrabarti, J. Chem. Phys. 109, 8607 (1998)

    ADS  Google Scholar 

  • A.M. Ferrenberg, D.P. Landau, K. Binder, Phys. Rev. E 58, 3353 (1998)

    Article  ADS  Google Scholar 

  • H.L. Frisch, S. Puri, P. Niebala, J. Chem. Phys. 110, 10514 (1999)

    Article  ADS  Google Scholar 

  • M. Müller, E.V. Albano, K. Binder, Phys. Rev. E 62, 5281 (2000)

    ADS  Google Scholar 

  • D. Sullivan, M.M. Telo da Gama, in Fluid Interfacial Phenomena (Wiley, New York, 1985)

  • S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, edited by C. Domb, J. Lebowitz (Academic, London, 1988)

  • H. Hinrichsen, R. Livi, D. Mukamel, A. Politi, Phys. Rev. Lett. 79, 2710 (1997); H. Hinrichsen, R. Livi, D. Mukamel, A. Politi, Phys. Rev. E 68, 041606 (2003)

    Article  ADS  Google Scholar 

  • J. Candia, E.V. Albano, Phys. Rev. Lett. 88, 016103 (2002); J. Candia, E.V. Albano, J. Phys.: Condens. Matter 14, 4927 (2002)

    Article  ADS  Google Scholar 

  • J. Candia, E.V. Albano, J. Chem. Phys. 117, 6699 (2002); J. Candia, E.V. Albano, J. Magn. Magn. Mater. 260, 338 (2003)

    Article  Google Scholar 

  • E. Cheng, M.W. Cole, Phys. Rev. B 41, 9650 (1990)

    ADS  Google Scholar 

  • M. Napiórkowski, W. Koch, S. Dietrich, Phys. Rev. A 45, 5760 (1992)

    ADS  Google Scholar 

  • K. Rejmer, S. Dietrich, M. Napiórkowski, Phys. Rev. E 60, 4027 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Dietrich, in New Approaches to Old and New Problems in Liquid State Theory - Inhomogeneities and Phase Separation in Simple, Complex and Quantum Fluids, edited by C. Caccamo, J.P. Hansen, G. Stell, NATO ASI, Ser. B (Kluwer, Dordrecht, 1998), pp. 197–244

  • A.O. Parry, C. Rascón, A.J. Wood, Phys. Rev. Lett. 83, 5535 (1999)

    Article  ADS  Google Scholar 

  • A.O. Parry, A.J. Wood, C. Rascón, J. Phys.: Condens. Matter 12, 7671 (2000)

    Article  ADS  Google Scholar 

  • A.O. Parry, A.J. Wood, E. Carlon, A. Drzewinski, Phys. Rev. Lett. 87, 196103 (2001)

    Article  ADS  Google Scholar 

  • A.O. Parry, M.J. Greenall, A.J. Wood, J. Phys.: Condens. Matter 14, 1169 (2002)

    Article  ADS  Google Scholar 

  • D.B. Abraham, A.O. Parry, A.J. Wood, Europhys. Lett. 60, 106 (2002)

    Article  ADS  Google Scholar 

  • D.B. Abraham, A. Maciolek, Phys. Rev. Lett. 89, 286101 (2002)

    Article  ADS  Google Scholar 

  • A.O. Parry, C. Rascón, A.J. Wood, Phys. Rev. Lett. 85, 345 (2000)

    ADS  Google Scholar 

  • A.O. Parry, A.J. Wood, C. Rascón, J. Phys.: Condens. Matter 13, 4591 (2001)

    ADS  Google Scholar 

  • E.V. Albano, A. De Virgiliis, M. Müller, K. Binder, J. Phys.: Condens. Matter 15, 333 (2003)

    Article  ADS  Google Scholar 

  • A. Milchev, M. Müller, K. Binder, D. Landau, Phys. Rev. E 68, 031601 (2003)

    Article  ADS  Google Scholar 

  • G. Timp, in Nanotechnology (Springer Verlag, New York, 1999)

  • D. Josel, D. Wheeler, H.W. Huber, T.P. Moffat, Phys. Rev. Lett. 87, 16102 (2001)

    ADS  Google Scholar 

  • A. De Virgiliis, O. Azzaroni, R.C. Salvarezza, E.V. Albano, Appl. Phys. Lett. 82, 1953 (2003)

    ADS  Google Scholar 

  • The subscript π is used to emphasize that this quantity is pertinent to a planar wetting transition

  • M.E. Fisher, J. Chem. Soc. Faraday Trans. II 82, 1589 (1986)

    Google Scholar 

  • M. Ausloos, N. Vandewalle, R. Cloots, Europhys. Lett. 24, 629 (1993); N. Vandewalle and M. Ausloos, Phys. Rev. E 50, R635 (1994)

    ADS  Google Scholar 

  • M. Eden, in Symp. on Information Theory in Biology, edited by H.P. Yockey (Pergamon Press, New York, 1958); Proc. 4th Berkeley Symposium on Mathematics, Statistics and Probability, edited by F. Neyman, (University of California Press, Berkeley, 1961), Vol. IV, p. 223

  • J. Candia, E.V. Albano, Eur. Phys. J. B 16, 531 (2000)

    Article  ADS  Google Scholar 

  • J. Candia, E.V. Albano, Phys. Rev. E 63, 066127 (2001)

    Article  ADS  Google Scholar 

  • J. Candia, E.V. Albano, J. Appl. Phys. 90, 5395 (2001)

    Article  ADS  Google Scholar 

  • K. Binder, D. Heermann A guide to Monte Carlo simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)

  • S.W. Sides, P.A. Rikvold, M.A. Novotny, Phys. Rev. Lett. 81, 834 (1998)

    Article  ADS  Google Scholar 

  • G. Korniss, C.J. White, P.A. Rikvold, M.A. Novotny, Phys. Rev. E 63, 016120 (2001)

    Article  ADS  Google Scholar 

  • E.V. Albano, K. Binder, D.W. Heermann, W. Paul, Surf. Sci. 223, 151 (1989)

    Article  Google Scholar 

  • K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981)

    Article  Google Scholar 

  • A.D. Bruce, J. Phys. C 14, 3667 (1981)

    ADS  Google Scholar 

  • M.M. Tsypin, H.W. J. Blöte, Phys. Rev. E 62, 73 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Albano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manías, V., Candia, J. & Albano, E. Corner wetting in a far-from-equilibrium magnetic growth model. Eur. Phys. J. B 47, 563–570 (2005). https://doi.org/10.1140/epjb/e2005-00355-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00355-4

Keywords

Navigation