Skip to main content
Log in

Abstract.

Recent STM measurements have revealed the existence of periodic charge modulations at the surface of certain cuprate superconductors. Here we show that the observed patterns are compatible with the formation of a three-dimensional crystal of doped holes, with space correlations extending between different Cu-O layers. This puts severe constraints on the dynamical stability of the crystallised hole structure, resulting in a close relationship between the periodicity of the electronic modulation and the interlayer distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Howald, H. Eisaki, N. Kaneko, A. Kapitulnik, cond-mat/0201546 (unpublished)

  2. J. E. Hoffman et al. , Science 295, 466 (2002)

    Google Scholar 

  3. J.E. Hoffman, et al. , Science 297, 1148 (2002)

    Google Scholar 

  4. C. Howald, H. Eisaki, N. Kaneko, M. Greven, A. Kapitulnik, Phys. Rev. B 67, 014533 (2003)

    Google Scholar 

  5. K. McElroy, et al. Nature 422, 592 (2003)

    Google Scholar 

  6. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani, Science 303, 1995 (2004)

    Google Scholar 

  7. K. McElroy et al. , cond-mat/0404005

  8. A. Fang, C. Howald, N. Kaneko, M. Greven, A. Kapitulnik, cond-mat/0404452

  9. T. Hanaguri, et al. , Nature 430, 1001 (2004)

    Google Scholar 

  10. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Google Scholar 

  11. A.A. Remova, B.Ya. Shapiro, Physica C 160, 202 (1989)

    Google Scholar 

  12. P. Quémerais, Mod. Phys. Lett. B 9, 1665 (1995)

    Google Scholar 

  13. S. Fratini, P. Quémerais, Mod. Phys. Lett. B 12, 1003 (1998); P. Quémerais, S. Fratini, Phys. C, 341-348, 229 (2000)

    Google Scholar 

  14. Y.H. Kim, P.H. Hor, Mod. Phys. Lett. B 15, 497 (2001)

    Google Scholar 

  15. H.C. Fu, J.C. Davis, D.-H. Lee, cond-mat/0403001

  16. H.D. Chen, et al. , Phys. Rev. Lett. 89, 137004 (2002); H.D. Chen, et al. , Phys. Rev. B 70, 024516 (2004); H.D. Chen, et al. , Phys. Rev. Lett. 93, 187002 (2004)

    Google Scholar 

  17. M. Vojta, Phys. Rev. B 66, 104505 (2002)

    Google Scholar 

  18. Z. Tesanovic, Phys. Rev. Lett. 93, 217004 (2004)

    Google Scholar 

  19. P.W. Anderson, cond-mat/0406038

  20. A. Bagchi, Phys. Rev. 178, 707 (1969)

    Google Scholar 

  21. For \(\gamma> 1.07\), the body centered orthorombic structure, with rectangular, stripe-like, symmetry in the planes, has a lower energy than the BCT However, taking the parameters appropriate for Na-CCOC, we find \(\Delta E <1\) meV in the concentration range x=0.02−0.06

  22. A. Zibold et al. , Phys. Rev. B 53, 11734 (1996)

    Google Scholar 

  23. N.N. Kovaleva et al. , Phys. Rev. B 69, 054511 (2004)

    Google Scholar 

  24. K. F. Herzfeld, Phys. Rev 29, 701 (1927)

    Google Scholar 

  25. S. Fratini, P. Quémerais, Eur. Phys. J. B 29, 41 (2002)

    Google Scholar 

  26. S. Lupi, P. Maselli, M. Capizzi, P. Calvani, P. Giura, P. Roy, Phys. Rev. Lett. 83, 4852 (1999)

    Google Scholar 

  27. A. Lucarelli et al. , Phys. Rev. Lett. 90, 037002 (2003)

    Google Scholar 

  28. Assuming for simplicity that the Lorentz local field factor of the crystallised structure at the concentrations of interest does not deviate significantly from the isotropic case, we can write the following approximate expression for the critical concentration: \( x_c=\frac{3 \epsilon_\infty}{16 \pi(1-\eta)}\left(\frac{\hbar \omega_0}{Ryd}\right)^2 \frac{da_0^2}{a_B^3} \) where a B is the Bohr radius and Ryd=13.6 eV. Taking \(\epsilon_\infty\approx 4.5\) and \(\eta\approx 0.5\) eV yields \(\omega_0\approx 0.16\) which gives \(x_c=3.9\times 10^{-3} (d/a_B)\) 0.05-0.11 for several cuprate crystal structures, with corresponding modulations \(x_c\approx\) 3.5-6

  29. Although they certainly favor charge ordering, commensurability effects decrease drastically when moving away from simple fractional fillings, and it has been shown that they do not dominate the Wigner crystal stability at low concentrations [see e.g. Y. Noda, M. Imada, Phys. Rev. Lett. 89, 176803 (2002); H. Falakshahi et al. , Eur. Phys. J. B 39, 93 (2004)]

    Google Scholar 

  30. M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys. 70, 897 (1998)

    Article  Google Scholar 

  31. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Google Scholar 

  32. S. Fratini, P. Quémerais, Eur. Phys. J. B 14, 99 (2000)

    Article  Google Scholar 

  33. G. Rastelli, S. Ciuchi, cond-mat/0406079

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fratini.

Additional information

Received: 14 June 2004, Published online: 23 December 2004

PACS:

74.72.-h Cuprate superconductors (high-T c and insulating parent compounds) - 71.30. + h Metal-insulator transitions and other electronic transitions - 71.38.-k Polarons and electron-phonon interactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastelli, G., Fratini, S. & Quémerais, P. On the stability of hole crystals in layered cuprates. Eur. Phys. J. B 42, 305–308 (2004). https://doi.org/10.1140/epjb/e2004-00385-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00385-4

Keywords

Navigation