Skip to main content
Log in

Mean-field solution of the parity-conserving kinetic phase transition in one dimension

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A two-offspring branching annihilating random walk model, with finite reaction rates, is studied in one-dimension. The model exhibits a transition from an active to an absorbing phase, expected to belong to the DP2 universality class embracing systems that possess two symmetric absorbing states, which in one-dimensional systems, is in many cases equivalent to parity conservation. The phase transition is studied analytically through a mean-field like modification of the so-called parity interval method. The original method of parity intervals allows for an exact analysis of the diffusion-controlled limit of infinite reaction rate, where there is no active phase and hence no phase transition. For finite rates, we obtain a surprisingly good description of the transition which compares favorably with the outcome of Monte Carlo simulations. This provides one of the first analytical attempts to deal with the broadly studied DP2 universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Percolation Structures and Processes, edited by G. Deutsher, R. Zallen, J. Adler, Annals of the Israel Physical Society, Vol. 5 (Hiler, Bristol, 1980)

  2. E. Domany, W. Kinzel, Phys. Rev. Lett. 53, 311 (1984)

    Article  MathSciNet  Google Scholar 

  3. T.M. Ligget, Interacting Particle Systems (Springer Verlag, New York, 1985)

  4. H. Hinrichsen, Adv. Phys. 49, 1 (2000)

    Article  Google Scholar 

  5. J. Marro, R. Dickman, Nonequilibrium Phase Transitions and Critical Phenomena (Cambridge University Press, Cambridge, 1996)

  6. J. Kohler, D. ben-Avraham, J. Phys. A 24, L621 (1991)

  7. P. Grassberger, Z. Phys. B 47, 365 (1982)

    MathSciNet  Google Scholar 

  8. H.D.I. Abarbanel, J.B. Bronzan, Phys. Rev. D 9, 2397 (1974)

    Article  Google Scholar 

  9. In many cases, but not always, the presence of parity-conservation is equivalent to a Z 2-symmetry (at least in one dimension). Owing to this reason this class is usually (improperly) called conserved-parity [4]

  10. P. Grassberger, F. Krause, T. von der Twer, J. Phys. A 17, L105 (1984)

  11. M.H. Kim, H. Park, Phys. Rev. Lett. 73, 2579 (1994)

    Article  Google Scholar 

  12. N. Menyhard, J. Phys. 27, 6139 (1994)

    Article  MATH  Google Scholar 

  13. N. Menyhárd, G. Odor, J. Phys. A 29, 7739 (1996)

    Google Scholar 

  14. K.S. Brown, K.E. Bassler, D.A. Browne, Phys. Rev. E 56, 3953 (1997)

    Article  Google Scholar 

  15. H. Hinrichsen, Phys. Rev. E 55, 219 (1997)

    Article  Google Scholar 

  16. N. Inui, A.Y. Tretyakov, Phys. Rev. Lett. 80, 5148 (1998)

    Article  Google Scholar 

  17. H. Takayasu, A.Y. Tretyakov, Phys. Rev. Lett. 68, 3060 (1992)

    Article  Google Scholar 

  18. G. Szabo, M.A. Santos, Phys. Rev. E 59, R2509 (1999)

  19. M. Bramson, L. Gray, Z. Warsch. Verw, Gebiete 68, 447 (1985)

    MathSciNet  MATH  Google Scholar 

  20. T.M. Ligget, Interacting Particle Systems (Springer, New York, 1985)

  21. I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev. Lett. 87, 045701 (2001)

    Article  Google Scholar 

  22. I. Jensen, Phys. Rev. E 50, 3623 (1994)

    Article  Google Scholar 

  23. J.L. Cardy, U.C. Täuber, Phys. Rev. Lett. 77, 4780 (1997)

    Article  Google Scholar 

  24. M.A. Muñoz, Bulletin of Asia Pacific Center for Theoretical Physics (APCTP) 9-10, 5 (2002)

  25. D. Zhong, D. ben-Avraham, Phys. Lett. A 209, 333 (1995)

    Article  Google Scholar 

  26. D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

  27. T. Masser, D. ben-Avraham, Phys. Rev. E 63, 066108 (2001)

    Article  Google Scholar 

  28. T. Masser, D. ben-Avraham, Phys. Lett. A 275, 382-385 (2000)

    Article  Google Scholar 

  29. S. Habib, K. Lindenberg, G. Lythe, C. Molina-Parí s, J. Chem. Phys. 115,73 (2001)

    Article  Google Scholar 

  30. D. ben-Avraham, M.A. Burschka, C.R. Doering, J. Stat. Phys. 60, 695 (1990)

    MathSciNet  MATH  Google Scholar 

  31. M. Henkel, H. Hinrichsen, J. Phys. A34, 1561 (2001)

  32. D. Zhong, D. ben-Avraham, J. Phys. A 28, 33 (1995)

    Article  Google Scholar 

  33. A. Sudbury, Ann. Probab. 18, 581 (1990)

    MathSciNet  MATH  Google Scholar 

  34. A. Szolnoki (private communication) has performed a cluster mean field analysis of the present model, and observed that a phase transition is obtained considering clusters with at least four sites. He has gone up to 7-sites, and shown that the results improve very slowly upon enlarging cluster size

  35. The same transition is observed whether one fixes r and treats \(\Gamma/\Omega\) as a critical field, or whether one fixes \(\Gamma/\Omega\) and takes r to be the critical field. Here we adopt the latter, with \(\Gamma/\Omega=1\)

  36. Observe that in this type of systems we do not have an exponential decay in the absorbing phase, but a power-law one, controlled asymptotically by the reaction \(A + A \to 0\)

  37. R. Dickman, M.A.F. de Menezes, Phys. Rev. E 66, 045101 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Muñoz.

Additional information

Received: 19 May 2003, Published online: 24 October 2003

PACS:

02.50.Ey Stochastic processes - 05.50. + q Lattice theory and statistics (Ising, Potts, etc.) - 05.70.Ln Nonequilibrium and irreversible thermodynamics - 82.40.-g Chemical kinetics and reactions: special regimes and techniques

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, D., ben-Avraham, D. & Muñoz, M.A. Mean-field solution of the parity-conserving kinetic phase transition in one dimension. Eur. Phys. J. B 35, 505–511 (2003). https://doi.org/10.1140/epjb/e2003-00303-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00303-4

Keywords

Navigation