Skip to main content
Log in

Abstract:

Second-order phase transitions in a non-equilibrium liquid-gas model with reversible mode couplings, i.e., model H for binary-fluid critical dynamics, are studied using dynamic field theory and the renormalization group. The system is driven out of equilibrium either by considering different values for the noise strengths in the Langevin equations describing the evolution of the dynamic variables (effectively placing these at different temperatures), or more generally by allowing for anisotropic noise strengths, i.e., by constraining the dynamics to be at different temperatures in d || - and d -dimensional subspaces, respectively. In the first, isotropic case, we find one infrared-stable and one unstable renormalization group fixed point. At the stable fixed point, detailed balance is dynamically restored, with the two noise strengths becoming asymptotically equal. The ensuing critical behavior is that of the standard equilibrium model H. At the novel unstable fixed point, the temperature ratio for the dynamic variables is renormalized to infinity, resulting in an effective decoupling between the two modes. We compute the critical exponents at this new fixed point to one-loop order. For model H with spatially anisotropic noise, we observe a critical softening only in the d -dimensional sector in wave vector space with lower noise temperature. The ensuing effective two-temperature model H does not have any stable fixed point in any physical dimension, at least to one-loop order. We obtain formal expressions for the novel critical exponents in a double expansion about the upper critical dimension d c = 4 - d || and with respect to d || , i.e., about the equilibrium theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 4 April 2002 Published online 13 August 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Täuber, U. Non-equilibrium behavior at a liquid-gas critical point. Eur. Phys. J. B 28, 423–440 (2002). https://doi.org/10.1140/epjb/e2002-00246-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2002-00246-2

Navigation